autogen_biclassifiers.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » bimdp » nodes » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » bimdp » nodes » autogen_biclassifiers.py
"""
AUTOMATICALLY GENERATED CODE, DO NOT MODIFY!

Edit and run autogen.py instead to overwrite this module.
"""

import mdp.nodes
from bimdp import BiClassifier

class SignumBiClassifier(BiClassifier, mdp.nodes.SignumClassifier):
    """Automatically created BiClassifier version of SignumClassifier."""
    def __init__(self, input_dim=None, output_dim=None, dtype=None, node_id=None, stop_result=None):
        """If the input dimension and the output dimension are
        unspecified, they will be set when the 'train' or 'execute'
        method is called for the first time.
        If dtype is unspecified, it will be inherited from the data
        it receives at the first call of 'train' or 'execute'.

        Every subclass must take care of up- or down-casting the internal
        structures to match this argument (use _refcast private
        method when possible).
        """
        super(SignumBiClassifier, self).__init__(input_dim=input_dim, output_dim=output_dim, dtype=dtype, node_id=node_id, stop_result=stop_result)

class PerceptronBiClassifier(BiClassifier, mdp.nodes.PerceptronClassifier):
    """Automatically created BiClassifier version of PerceptronClassifier."""
    def __init__(self, input_dim=None, dtype=None, node_id=None, stop_result=None):
        super(PerceptronBiClassifier, self).__init__(input_dim=input_dim, dtype=dtype, node_id=node_id, stop_result=stop_result)

class SimpleMarkovBiClassifier(BiClassifier, mdp.nodes.SimpleMarkovClassifier):
    """Automatically created BiClassifier version of SimpleMarkovClassifier."""
    def __init__(self, input_dim=None, dtype=None, node_id=None, stop_result=None):
        super(SimpleMarkovBiClassifier, self).__init__(input_dim=input_dim, dtype=dtype, node_id=node_id, stop_result=stop_result)

class DiscreteHopfieldBiClassifier(BiClassifier, mdp.nodes.DiscreteHopfieldClassifier):
    """Automatically created BiClassifier version of DiscreteHopfieldClassifier."""
    def __init__(self, input_dim=None, node_id=None, stop_result=None):
        super(DiscreteHopfieldBiClassifier, self).__init__(input_dim=input_dim, node_id=node_id, stop_result=stop_result)

class KMeansBiClassifier(BiClassifier, mdp.nodes.KMeansClassifier):
    """Automatically created BiClassifier version of KMeansClassifier."""
    def __init__(self, num_clusters, max_iter=10000, input_dim=None, dtype=None, node_id=None, stop_result=None):
        """Employs K-Means Clustering for a given number of centroids.
        
        num_clusters -- number of centroids to use = number of clusters
        max_iter     -- if the algorithm does not reach convergence (for some
                        numerical reason), stop after max_iter iterations
        """
        super(KMeansBiClassifier, self).__init__(num_clusters=num_clusters, max_iter=max_iter, input_dim=input_dim, dtype=dtype, node_id=node_id, stop_result=stop_result)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.