lle_nodes.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » contrib » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » contrib » lle_nodes.py
from mdp import numx,numx_linalg,Cumulator,TrainingException,MDPWarning
from mdp.utils import mult,symeig,nongeneral_svd,svd,sqrtm
import warnings as _warnings

# some useful functions
sqrt = numx.sqrt

# search XXX for locations where future work is needed

#########################################################
#  Locally Linear Embedding
#########################################################

class LLENode(Cumulator):
    """Perform a Locally Linear Embedding analysis on the data.

    Internal variables of interest:
      self.training_projection -- the LLE projection of the training data
                                 (defined when training finishes)
      self.desired_variance -- variance limit used to compute
                               intrinsic dimensionality
                             
    Based on the algorithm outlined in 'An Introduction to Locally
    Linear Embedding' by L. Saul and S. Roweis, using improvements
    suggested in 'Locally Linear Embedding for Classification' by
    D. deRidder and R.P.W. Duin.

    References: Roweis, S. and Saul, L., Nonlinear dimensionality
    reduction by locally linear embedding, Science 290 (5500), pp.
    2323-2326, 2000.

    Original code contributed by:
      Jake VanderPlas, University of Washington
      vanderplas@astro.washington.edu
    """
    
    def __init__(self, k, r=0.001, svd=False, verbose=False,
                 input_dim=None, output_dim=None, dtype=None):
        """
        Keyword Arguments:

         k -- number of nearest neighbors to use
         r -- regularization constant; if None, r is automatically
              computed using the method presented in deRidder and Duin;
              this method involves solving an eigenvalue problem for
              every data point, and can slow down the algorithm
              If specified, it multiplies the trace of the local covariance
              matrix of the distances, as in Saul & Roweis (faster)
         svd -- if True, use SVD to compute the projection matrix;
                SVD is slower but more stable
         verbose -- if True, displays information about the progress
                    of the algorithm

         output_dim -- number of dimensions to output
                       or a float between 0.0 and 1.0. In the latter case,
                       output_dim specifies the desired fraction of variance
                       to be exaplained, and the final number of output
                       dimensions is known at the end of training
                       (e.g., for 'output_dim=0.95' the algorithm will keep
                       as many dimensions as necessary in order to explain
                       95% of the input variance)                       
        """

        if isinstance(output_dim, float) and output_dim <= 1:
            self.desired_variance = output_dim
            output_dim = None
        else:
            self.desired_variance = None
         
        super(LLENode, self).__init__(input_dim, output_dim, dtype)

        self.k = k
        self.r = r
        self.svd = svd
        self.verbose = verbose
 
    def _get_supported_dtypes(self):
        return ['float32', 'float64']

    def _stop_training(self):
        Cumulator._stop_training(self)

        if self.verbose:
            msg = ('training LLE on %i points' 
                   ' in %i dimensions...' % (self.data.shape[0],
                                             self.data.shape[1]))
            print msg

        # some useful quantities
        M = self.data
        N = M.shape[0]
        k = self.k
        r = self.r

        # indices of diagonal elements
        W_diag_idx = numx.arange(N)
        Q_diag_idx = numx.arange(k)

        if k > N:
            err = ('k=%i must be less than or ' 
                   'equal to number of training points N=%i' % (k, N))
            raise TrainingException(err)
 
        # determines number of output dimensions: if desired_variance
        # is specified, we need to learn it from the data. Otherwise,
        # it's easy
        learn_outdim = False
        if self.output_dim is None:
            if self.desired_variance is None:
                self.output_dim = self.input_dim
            else:
                learn_outdim = True

        # do we need to automatically determine the regularization term?
        auto_reg = r is None

        # determine number of output dims, precalculate useful stuff
        if learn_outdim:
            Qs, sig2s, nbrss = self._adjust_output_dim()

        # build the weight matrix
        #XXX future work:
        #XXX   for faster implementation, W should be a sparse matrix
        W = numx.zeros((N, N), dtype=self.dtype)

        if self.verbose:
            print ' - constructing [%i x %i] weight matrix...' % W.shape
    
        for row in range(N):
            if learn_outdim:
                Q = Qs[row, :, :]
                nbrs = nbrss[row, :]
            else:
                # -----------------------------------------------
                #  find k nearest neighbors
                # -----------------------------------------------
                M_Mi = M-M[row]
                nbrs = numx.argsort((M_Mi**2).sum(1))[1:k+1]
                M_Mi = M_Mi[nbrs]
                # compute covariance matrix of distances
                Q = mult(M_Mi, M_Mi.T)
                
            # -----------------------------------------------
            #  compute weight vector based on neighbors
            # -----------------------------------------------

            #Covariance matrix may be nearly singular:
            # add a diagonal correction to prevent numerical errors
            if auto_reg:
                # automatic mode: correction is equal to the sum of
                # the (d_in-d_out) unused variances (as in deRidder &
                # Duin)
                if learn_outdim:
                    sig2 = sig2s[row, :]
                else:
                    sig2 = svd(M_Mi, compute_uv=0)**2
                r = numx.sum(sig2[self.output_dim:])
                Q[Q_diag_idx, Q_diag_idx] += r
            else:
                # Roweis et al instead use "a correction that 
                #   is small compared to the trace" e.g.:
                # r = 0.001 * float(Q.trace())
                # this is equivalent to assuming 0.1% of the variance is unused
                Q[Q_diag_idx, Q_diag_idx] += r*Q.trace()
                
            #solve for weight
            # weight is w such that sum(Q_ij * w_j) = 1 for all i
            # XXX refcast is due to numpy bug: floats become double
            w = self._refcast(numx_linalg.solve(Q, numx.ones(k)))
            w /= w.sum()

            #update row of the weight matrix
            W[nbrs, row] = w

        if self.verbose:
            msg = (' - finding [%i x %i] null space of weight matrix\n'
                   '     (may take a while)...' % (self.output_dim, N))
            print msg

        self.W = W.copy()
        #to find the null space, we need the bottom d+1
        #  eigenvectors of (W-I).T*(W-I)
        #Compute this using the svd of (W-I):
        W[W_diag_idx, W_diag_idx] -= 1.

        #XXX future work:
        #XXX  use of upcoming ARPACK interface for bottom few eigenvectors
        #XXX   of a sparse matrix will significantly increase the speed
        #XXX   of the next step
        if self.svd:
            sig, U = nongeneral_svd(W.T, range=(2, self.output_dim+1))
        else:
            # the following code does the same computation, but uses
            # symeig, which computes only the required eigenvectors, and
            # is much faster. However, it could also be more unstable...
            WW = mult(W, W.T)
            # regularizes the eigenvalues, does not change the eigenvectors:
            WW[W_diag_idx, W_diag_idx] += 0.1
            sig, U = symeig(WW, range=(2, self.output_dim+1), overwrite=True)

        self.training_projection = U

    def _adjust_output_dim(self):
        # this function is called if we need to compute the number of
        # output dimensions automatically; some quantities that are
        # useful later are pre-calculated to spare precious time

        if self.verbose:
            print ' - adjusting output dim:'

        #otherwise, we need to compute output_dim
        #                  from desired_variance
        M = self.data
        k = self.k
        N, d_in = M.shape

        m_est_array = []
        Qs = numx.zeros((N, k, k))
        sig2s = numx.zeros((N, d_in))
        nbrss = numx.zeros((N, k), dtype='i')
        
        for row in range(N):
            #-----------------------------------------------
            #  find k nearest neighbors
            #-----------------------------------------------
            M_Mi = M-M[row]
            nbrs = numx.argsort((M_Mi**2).sum(1))[1:k+1]
            M_Mi = M_Mi[nbrs]
            # compute covariance matrix of distances
            Qs[row, :, :] = mult(M_Mi, M_Mi.T)
            nbrss[row, :] = nbrs

            #-----------------------------------------------
            # singular values of M_Mi give the variance:
            #   use this to compute intrinsic dimensionality
            #   at this point
            #-----------------------------------------------
            sig2 = (svd(M_Mi, compute_uv=0))**2
            sig2s[row, :sig2.shape[0]] = sig2

            #-----------------------------------------------
            # use sig2 to compute intrinsic dimensionality of the
            #   data at this neighborhood.  The dimensionality is the
            #   number of eigenvalues needed to sum to the total
            #   desired variance
            #-----------------------------------------------
            sig2 /= sig2.sum()
            S = sig2.cumsum()
            m_est = S.searchsorted(self.desired_variance)
            if m_est > 0:
                m_est += (self.desired_variance-S[m_est-1])/sig2[m_est]
            else:
                m_est = self.desired_variance/sig2[m_est]
            m_est_array.append(m_est)

        m_est_array = numx.asarray(m_est_array)
        self.output_dim = int( numx.ceil( numx.median(m_est_array) ) )
        if self.verbose:
            msg = ('      output_dim = %i'
                   ' for variance of %.2f' % (self.output_dim,
                                              self.desired_variance))
            print msg

        return Qs, sig2s, nbrss
    
    def _execute(self, x):
        #----------------------------------------------------
        # similar algorithm to that within self.stop_training()
        #  refer there for notes & comments on code
        #----------------------------------------------------
        N = self.data.shape[0]
        Nx = x.shape[0]
        W = numx.zeros((Nx, N), dtype=self.dtype)

        k, r = self.k, self.r
        d_out = self.output_dim
        Q_diag_idx = numx.arange(k)
        
        for row in range(Nx):
            #find nearest neighbors of x in M
            M_xi = self.data-x[row]
            nbrs = numx.argsort( (M_xi**2).sum(1) )[:k]
            M_xi = M_xi[nbrs]

            #find corrected covariance matrix Q
            Q = mult(M_xi, M_xi.T)
            if r is None and k > d_out:
                sig2 = (svd(M_xi, compute_uv=0))**2
                r = numx.sum(sig2[d_out:])
                Q[Q_diag_idx, Q_diag_idx] += r
            if r is not None:
                Q[Q_diag_idx, Q_diag_idx] += r

            #solve for weights
            w = self._refcast(numx_linalg.solve(Q , numx.ones(k)))
            w /= w.sum()
            W[row, nbrs] = w

        #multiply weights by result of SVD from training
        return numx.dot(W, self.training_projection)
    
    def is_trainable(self):
        return True

    def is_invertible(self):
        return False


#########################################################
#  Hessian LLE
#########################################################


# Modified Gram-Schmidt
def _mgs(a):
    m, n = a.shape
    v = a.copy()
    r = numx.zeros((n, n))
    for i in range(n):
        r[i, i] = numx_linalg.norm(v[:, i])
        v[:, i] = v[:, i]/r[i, i]
        for j in range(i+1, n):
            r[i, j] = mult(v[:, i], v[:, j])
            v[:, j] = v[:, j] - r[i, j]*v[:, i]
    # q is v
    return v, r

class HLLENode(LLENode):
    """Perform a Hessian Locally Linear Embedding analysis on the data.
    
    Internal variables of interest:
      self.training_projection -- the HLLE projection of the training data
                                 (defined when training finishes)
      self.desired_variance -- variance limit used to compute
                               intrinsic dimensionality
                            
    Implementation based on algorithm outlined in
    Donoho, D. L., and Grimes, C., Hessian Eigenmaps: new locally linear
    embedding techniques for high-dimensional data, Proceedings of the
    National Academy of Sciences 100(10): 5591-5596, 2003. 

    Original code contributed by:
      Jake Vanderplas, University of Washington
      vanderplas@astro.washington.edu
    """

    #----------------------------------------------------
    # Note that many methods ar inherited from LLENode,
    #  including _execute(), _adjust_output_dim(), etc.
    # The main advantage of the Hessian estimator is to
    #  limit distortions of the input manifold.  Once
    #  the model has been trained, it is sufficient (and
    #  much less computationally intensive) to determine
    #  projections for new points using the LLE framework.
    #----------------------------------------------------
    
    def __init__(self, k, r=0.001, svd=False, verbose=False,
                 input_dim=None, output_dim=None, dtype=None):
        """
        Keyword Arguments:

         k -- number of nearest neighbors to use; the node will raise
              an MDPWarning if k is smaller than
                k >= 1 + output_dim + output_dim*(output_dim+1)/2,
              because in this case a less efficient computation must be
              used, and the ablgorithm can become unstable
         r -- regularization constant; as opposed to LLENode, it is
              not possible to compute this constant automatically; it is
              only used during execution
         svd -- if True, use SVD to compute the projection matrix;
                SVD is slower but more stable
         verbose -- if True, displays information about the progress
                    of the algorithm

         output_dim -- number of dimensions to output
                       or a float between 0.0 and 1.0. In the latter case,
                       output_dim specifies the desired fraction of variance
                       to be exaplained, and the final number of output
                       dimensions is known at the end of training
                       (e.g., for 'output_dim=0.95' the algorithm will keep
                       as many dimensions as necessary in order to explain
                       95% of the input variance)                       
        """
        LLENode.__init__(self, k, r, svd, verbose,
                         input_dim, output_dim, dtype)

    def _stop_training(self):
        Cumulator._stop_training(self)
        
        k = self.k
        M = self.data
        N = M.shape[0]
        
        if k > N:
            err = ('k=%i must be less than'
                   ' or equal to number of training points N=%i' % (k, N))
            raise TrainingException(err)
        
        if self.verbose:
            print 'performing HLLE on %i points in %i dimensions...' % M.shape

        # determines number of output dimensions: if desired_variance
        # is specified, we need to learn it from the data. Otherwise,
        # it's easy
        learn_outdim = False
        if self.output_dim is None:
            if self.desired_variance is None:
                self.output_dim = self.input_dim
            else:
                learn_outdim = True

        # determine number of output dims, precalculate useful stuff
        if learn_outdim:
            Qs, sig2s, nbrss = self._adjust_output_dim()

        d_out = self.output_dim
        d_in = self.input_dim

        #dp = d_out + (d_out-1) + (d_out-2) + ...
        dp = d_out*(d_out+1)/2

        if min(k, N) <= d_out:
            err = ('k=%i and n=%i (number of input data points) must be'
                   ' larger than output_dim=%i' % (k, N, d_out))
            raise TrainingException(err)
        
        if k < 1+d_out+dp:
            wrn = ('The number of neighbours, k=%i, is smaller than'
                   ' 1 + output_dim + output_dim*(output_dim+1)/2 = %i,'
                   ' which might result in unstable results.'
                   % (k, 1+d_out+dp))
            _warnings.warn(wrn, MDPWarning)

        #build the weight matrix
        #XXX   for faster implementation, W should be a sparse matrix
        W = numx.zeros((N, dp*N), dtype=self.dtype)

        if self.verbose:
            print ' - constructing [%i x %i] weight matrix...' % W.shape

        for row in range(N):
            if learn_outdim:
                nbrs = nbrss[row, :]
            else:
                # -----------------------------------------------
                #  find k nearest neighbors
                # -----------------------------------------------
                M_Mi = M-M[row]
                nbrs = numx.argsort((M_Mi**2).sum(1))[1:k+1]

            #-----------------------------------------------
            #  center the neighborhood using the mean
            #-----------------------------------------------
            nbrhd = M[nbrs] # this makes a copy
            nbrhd -= nbrhd.mean(0)

            #-----------------------------------------------
            #  compute local coordinates
            #   using a singular value decomposition
            #-----------------------------------------------
            U, sig, VT = svd(nbrhd)
            nbrhd = U.T[:d_out]
            del VT
            
            #-----------------------------------------------
            #  build Hessian estimator
            #-----------------------------------------------
            Yi = numx.zeros((dp, k), dtype=self.dtype)
            ct = 0
            for i in range(d_out):
                Yi[ct:ct+d_out-i, :] = nbrhd[i] * nbrhd[i:, :]
                ct += d_out-i
            Yi = numx.concatenate([numx.ones((1, k), dtype=self.dtype),
                                   nbrhd, Yi], 0)
            
            #-----------------------------------------------
            #  orthogonalize linear and quadratic forms
            #   with QR factorization
            #  and make the weights sum to 1
            #-----------------------------------------------
            if k >= 1+d_out+dp:
                Q, R = numx_linalg.qr(Yi.T)
                w = Q[:, d_out+1:d_out+1+dp]
            else:
                q, r = _mgs(Yi.T)
                w = q[:, -dp:]
            
            S = w.sum(0) #sum along columns
            #if S[i] is too small, set it equal to 1.0
            # this prevents weights from blowing up
            S[numx.where(numx.absolute(S)<1E-4)] = 1.0
            #print w.shape, S.shape, (w/S).shape
            #print W[nbrs, row*dp:(row+1)*dp].shape
            W[nbrs, row*dp:(row+1)*dp] = w / S

        #-----------------------------------------------
        # To find the null space, we want the
        #  first d+1 eigenvectors of W.T*W
        # Compute this using an svd of W
        #-----------------------------------------------
        
        if self.verbose:
            msg = (' - finding [%i x %i] ' 
                   'null space of weight matrix...' % (d_out, N))
            print msg

        #XXX future work:
        #XXX  use of upcoming ARPACK interface for bottom few eigenvectors
        #XXX   of a sparse matrix will significantly increase the speed
        #XXX   of the next step
        
        if self.svd:
            sig, U = nongeneral_svd(W.T, range=(2, d_out+1))
            Y = U*numx.sqrt(N)         
        else:
            WW = mult(W, W.T)
            # regularizes the eigenvalues, does not change the eigenvectors:
            W_diag_idx = numx.arange(N)
            WW[W_diag_idx, W_diag_idx] += 0.01
            sig, U = symeig(WW, range=(2, self.output_dim+1), overwrite=True)
            Y = U*numx.sqrt(N)
            del WW
        del W

        #-----------------------------------------------
        # Normalize Y
        #
        # Alternative way to do it:
        #  we need R = (Y.T*Y)^(-1/2)
        #   do this with an SVD of Y            del VT

        #      Y = U*sig*V.T
        #      Y.T*Y = (V*sig.T*U.T) * (U*sig*V.T)
        #            = V * (sig*sig.T) * V.T
        #            = V * sig^2 V.T
        #   so
        #      R = V * sig^-1 * V.T
        # The code is:
        #    U, sig, VT = svd(Y)
        #    del U
        #    S = numx.diag(sig**-1)
        #    self.training_projection = mult(Y, mult(VT.T, mult(S, VT)))
        #-----------------------------------------------
        if self.verbose:
            print ' - normalizing null space...'

        C = sqrtm(mult(Y.T, Y))
        self.training_projection = mult(Y, C)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.