graph.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » graph » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » graph » graph.py
# inspired by some code by Nathan Denny (1999)
# see http://www.ece.arizona.edu/~denny/python_nest/graph_lib_1.0.1.html

try:
    # use reduce against BDFL's will even on python > 2.6
    from functools import reduce
except ImportError:
    pass
    
class GraphException(Exception):
    """Base class for exception in the graph package."""
    pass

class GraphTopologicalException(GraphException):
    """Exception thrown during a topological sort if the graph is cyclical."""
    pass



def is_sequence(x):
    return isinstance(x, (list, tuple))

def recursive_map(func, seq):
    """Apply a function recursively on a sequence and all subsequences."""
    def _func(x):
        if is_sequence(x):
            return recursive_map(func, x)
        else:
            return func(x)
    return map(_func, seq)

def recursive_reduce(func, seq, *argv):
    """Apply reduce(func, seq) recursively to a sequence and all its
    subsequences."""
    def _func(x, y):
        if is_sequence(y):
            return func(x, recursive_reduce(func, y))
        else:
            return func(x, y)
    return reduce(_func, seq, *argv)



class GraphNode(object):
    """Represent a graph node and all information attached to it."""
    
    def __init__(self, data=None):
        self.data = data
        # edges in
        self.ein = []
        # edges out
        self.eout = []

    def add_edge_in(self, edge):
        self.ein.append(edge)

    def add_edge_out(self, edge):
        self.eout.append(edge)
    
    def remove_edge_in(self, edge):
        self.ein.remove(edge)
    
    def remove_edge_out(self, edge):
        self.eout.remove(edge)

    def get_edges_in(self, from_ = None):
        """Return a copy of the list of the entering edges. If from_
        is specified, return only the nodes coming from that node."""
        inedges = self.ein[:]
        if from_:
            inedges = [edge for edge in inedges if edge.head == from_]
        return inedges

    def get_edges_out(self, to_ = None):
        """Return a copy of the list of the outgoing edges. If to_
        is specified, return only the nodes going to that node."""
        outedges = self.eout[:]
        if to_:
            outedges = [edge for edge in outedges if edge.tail == to_]
        return outedges

    def get_edges(self, neighbor = None):
        """Return a copy of all edges. If neighbor is specified, return
        only the edges connected to that node."""
        return ( self.get_edges_in(from_=neighbor) +
                 self.get_edges_out(to_=neighbor) )

    def in_degree(self):
        """Return the number of entering edges."""
        return len(self.ein)

    def out_degree(self):
        """Return the number of outgoing edges."""
        return len(self.eout)

    def degree(self):
        """Return the number of edges."""
        return self.in_degree()+self.out_degree()

    def in_neighbors(self):
        """Return the neighbors down in-edges (i.e. the parents nodes)."""
        return map(lambda x: x.get_head(), self.ein)

    def out_neighbors(self):
        """Return the neighbors down in-edges (i.e. the parents nodes)."""
        return map(lambda x: x.get_tail(), self.eout)

    def neighbors(self):
        return self.in_neighbors() + self.out_neighbors()
        
class GraphEdge(object):
    """Represent a graph edge and all information attached to it."""

    def __init__(self, head, tail, data=None):
        # head node
        self.head = head
        # neighbors out
        self.tail = tail
        # arbitrary data slot
        self.data = data
        
    def get_ends(self):
        """Return the tuple (head_id, tail_id)."""
        return (self.head, self.tail)

    def get_tail(self):
        return self.tail

    def get_head(self):
        return self.head

class Graph(object):
    """Represent a directed graph."""

    def __init__(self):
        # list of nodes
        self.nodes = []
        # list of edges
        self.edges = []

    # node functions
    def add_node(self, data=None):
        node = GraphNode(data=data)
        self.nodes.append(node)
        return node

    def remove_node(self, node):
        # the node is not in this graph
        if node not in self.nodes:
            errstr = 'This node is not part of the graph (%s)' % str(node_id)
            raise GraphException(errstr)

        # remove all edges containing this node
        for edge in node.get_edges():
            self.remove_edge(edge)
        # remove the node
        self.nodes.remove(node)

    # edge functions
    def add_edge(self, head, tail, data=None):
        """Add an edge going from head to tail.
        head : head node
        tail : tail node
        """
        # create edge
        edge = GraphEdge(head, tail, data=data)
        # add edge to head and tail node
        head.add_edge_out(edge)
        tail.add_edge_in(edge)
        # add to the edges dictionary
        self.edges.append(edge)
        return edge

    def remove_edge(self, edge):
        head, tail = edge.get_ends()
        # remove from head
        head.remove_edge_out(edge)
        # remove from tail
        tail.remove_edge_in(edge)
        # remove the edge
        self.edges.remove(edge)

    ### populate functions

    def add_nodes(self, data):
        """Add many nodes at once.

        data -- number of nodes to add or sequence of data values, one for
                each new node"""
        if not is_sequence(data):
            data = [None]*data
        return map(self.add_node, data)

    def add_tree(self, tree):
        """Add a tree to the graph.

        The tree is specified with a nested list of tuple, in a LISP-like
        notation. The values specified in the list become the values of
        the single nodes.

        Return an equivalent nested list with the nodes instead of the values.

        Example:
        >>> a=b=c=d=e=None
        >>> g.add_tree( (a, b, (c, d ,e)) )
        corresponds to this tree structure, with all node values set to None:

                a
               / \
              b   c
                 / \
                d   e
        """

        def _add_edge(root, son):
            self.add_edge(root, son)
            return root

        nodes = recursive_map(self.add_node, tree)
        recursive_reduce(_add_edge, nodes)
        return nodes

    def add_full_connectivity(self, from_nodes, to_nodes):
        """Add full connectivity from a group of nodes to another one.
        Return a list of lists of edges, one for each node in 'from_nodes'.

        Example: create a two-layer graph with full connectivity.
        >>> g = Graph()
        >>> layer1 = g.add_nodes(10)
        >>> layer2 = g.add_nodes(5)
        >>> g.add_full_connectivity(layer1, layer2)
        """
        edges = []
        for from_ in from_nodes:
            edges.append(map(lambda x: self.add_edge(from_, x), to_nodes))
        return edges
        
    ###### graph algorithms

    def topological_sort(self):
        """Perform a topological sort of the nodes. If the graph has a cycle,
        throw a GraphTopologicalException with the list of successfully
        ordered nodes."""
        # topologically sorted list of the nodes (result)
        topological_list = []
        # queue (fifo list) of the nodes with in_degree 0
        topological_queue = []
        # {node: in_degree} for the remaining nodes (those with in_degree>0)
        remaining_indegree = {}

        # init queues and lists
        for node in self.nodes:
            indegree = node.in_degree()
            if indegree == 0:
                topological_queue.append(node)
            else:
                remaining_indegree[node] = indegree

        # remove nodes with in_degree 0 and decrease the in_degree of their sons
        while len(topological_queue):
            # remove the first node with degree 0
            node = topological_queue.pop(0)
            topological_list.append(node)
            # decrease the in_degree of the sons
            for son in node.out_neighbors():
                remaining_indegree[son] -= 1
                if remaining_indegree[son] == 0:
                    topological_queue.append(son)

        # if not all nodes were covered, the graph must have a cycle
        # raise a GraphTopographicalException
        if len(topological_list)!=len(self.nodes):
            raise GraphTopologicalException(topological_list)
        
        return topological_list

    ### Depth-First sort

    def _dfs(self, neighbors_fct, root, visit_fct=None):
        # core depth-first sort function
        # changing the neighbors function to return the sons of a node,
        # its parents, or both one gets normal dfs, reverse dfs, or
        # dfs on the equivalent undirected graph, respectively
        
        # result list containing the nodes in Depth-First order
        dfs_list = []
        # keep track of all already visited nodes
        visited_nodes = { root: None }

        # stack (lifo) list
        dfs_stack = []
        dfs_stack.append(root)

        while len(dfs_stack):
            # consider the next node on the stack
            node = dfs_stack.pop()
            dfs_list.append(node)
            # visit the node
            if visit_fct != None:
                visit_fct(node)
            # add all sons to the stack (if not already visited)
            for son in neighbors_fct(node):
                if son not in visited_nodes:
                    visited_nodes[son] = None
                    dfs_stack.append(son)
        
        return dfs_list
        
    def dfs(self, root, visit_fct=None):
        """Return a list of nodes in some Depth First order starting from
        a root node. If defined, visit_fct is applied on each visited node.

        The returned list does not have to contain all nodes in the
        graph, but only the ones reachable from the root.
        """
        
        neighbors_fct = lambda node: node.out_neighbors()
        return self._dfs(neighbors_fct, root, visit_fct=visit_fct)

    def undirected_dfs(self, root, visit_fct=None):
        """Perform Depth First sort.

        This function is identical to dfs, but the sort is performed on
        the equivalent undirected version of the graph."""
        neighbors_fct = lambda node: node.neighbors()
        return self._dfs(neighbors_fct, root, visit_fct=visit_fct)

    ### Connected components

    def connected_components(self):
        """Return a list of lists containing the nodes of all connected
        components of the graph."""
        
        visited = {}
        def visit_fct(node, visited=visited):
            visited[node] = None
            
        components = []
        nodes = self.nodes
        for node in nodes:
            if node in visited:
                continue
            components.append(self.undirected_dfs(node, visit_fct))
        return components

    def is_weakly_connected(self):
        """Return True if the graph is weakly connected."""
        return len(self.undirected_dfs(self.nodes[0]))==len(self.nodes)

    ### Breadth-First Sort
    # BFS and DFS could be generalized to one function. I leave them
    # distinct for clarity.

    def _bfs(self, neighbors_fct, root, visit_fct=None):
        # core breadth-first sort function
        # changing the neighbors function to return the sons of a node,
        # its parents, or both one gets normal bfs, reverse bfs, or
        # bfs on the equivalent undirected graph, respectively
        
        # result list containing the nodes in Breadth-First order
        bfs_list = []
        # keep track of all already visited nodes
        visited_nodes = { root: None }

        # queue (fifo) list
        bfs_queue = []
        bfs_queue.append(root)

        while len(bfs_queue):
            # consider the next node in the queue
            node = bfs_queue.pop(0)
            bfs_list.append(node)
            # visit the node
            if visit_fct != None:
                visit_fct(node)
            # add all sons to the queue (if not already visited)
            for son in neighbors_fct(node):
                if son not in visited_nodes:
                    visited_nodes[son] = None
                    bfs_queue.append(son)
        
        return bfs_list
        
    def bfs(self, root, visit_fct=None):
        """Return a list of nodes in some Breadth First order starting from
        a root node. If defined, visit_fct is applied on each visited node.

        Note the returned list does not have to contain all nodes in the
        graph, but only the ones reachable from the root."""
        
        neighbors_fct = lambda node: node.out_neighbors()
        return self._bfs(neighbors_fct, root, visit_fct=visit_fct)

    def undirected_bfs(self, root, visit_fct=None):
        """Perform Breadth First sort.

        This function is identical to bfs, but the sort is performed on
        the equivalent undirected version of the graph."""
        
        neighbors_fct = lambda node: node.neighbors()
        return self._bfs(neighbors_fct, root, visit_fct=visit_fct)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.