rbm_nodes.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » nodes » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » nodes » rbm_nodes.py
import mdp
from mdp import numx
from mdp.utils import mult

random = mdp.numx_rand.random
randn = mdp.numx_rand.randn
exp = mdp.numx.exp

# TODO: does it make sense to define the inverse of RBMNode as sampling
#    from the visible layer given an hidden state?

# this and the other replication functions should go in mdp.utils
def rrep(x, n):
    """Replicate x n-times on a new last dimension"""
    shp = x.shape + (1,)
    return x.reshape(shp).repeat(n, axis=-1)


class RBMNode(mdp.Node):
    """Restricted Boltzmann Machine node. An RBM is an undirected
    probabilistic network with binary variables. The graph is
    bipartite into observed ('visible') and hidden ('latent') variables.

    By default, the 'execute' function returns the *probability* of
    one of the hiden variables being equal to 1 given the input.

    Use the 'sample_v' function to sample from the observed variables
    given a setting of the hidden variables, and 'sample_h' to do the
    opposite. The 'energy' function can be used to compute the energy
    of a given setting of all variables.

    The network is trained by Contrastive Divergence, as described in
    Hinton, G. E. (2002). Training products of experts by minimizing
    contrastive divergence. Neural Computation, 14(8):1711-1800

    Internal variables of interest:
    self.w -- generative weights between hidden and observed variables
    self.bv -- bias vector of the observed variables
    self.bh -- bias vector of the hidden variables

    For more information on RBMs, see
    Geoffrey E. Hinton (2007) Boltzmann machine. Scholarpedia, 2(5):1668
    """

    def __init__(self, hidden_dim, visible_dim = None, dtype = None):
        """
        Arguments:

        hidden_dim -- number of hidden variables
        visible_dim -- number of observed variables
        """
        super(RBMNode, self).__init__(visible_dim, hidden_dim, dtype)
        self._initialized = False

    def _get_supported_dtypes(self):
        """Return the list of dtypes supported by this node."""
        return ['float32', 'float64']

    def _init_weights(self):
        # weights and biases are initialized to small random values to
        # break the simmetry that might lead to degenerate solutions during
        # learning
        self._initialized = True
        
        # weights
        self.w = self._refcast(randn(self.input_dim, self.output_dim)*0.1)
        # bias on the visibile (input) units
        self.bv = self._refcast(randn(self.input_dim)*0.1)
        # bias on the hidden (output) units
        self.bh = self._refcast(randn(self.output_dim)*0.1)

        # delta w, bv, bh used for momentum term
        self._delta = (0., 0., 0.)

    def _sample_h(self, v):
        # returns P(h=1|v,W,b) and a sample from it
        probs = 1./(1. + exp(-self.bh - mult(v, self.w)))
        h = (probs > random(probs.shape)).astype(self.dtype)
        return probs, h

    def _sample_v(self, h):
        # returns  P(v=1|h,W,b) and a sample from it
        probs = 1./(1. + exp(-self.bv - mult(h, self.w.T)))
        v = (probs > random(probs.shape)).astype(self.dtype)
        return probs, v

    def _train(self, v, n_updates=1, epsilon=0.1, decay=0., momentum=0.,
               verbose=False):
        """Update the internal structures according to the input data 'v'.
        The training is performed using Contrastive Divergence (CD).

        v -- a binary matrix having different variables on different columns
             and observations on the rows
        n_updates -- number of CD iterations. Default value: 1
        epsilon -- learning rate. Default value: 0.1
        decay -- weight decay term. Default value: 0.
        momentum -- momentum term. Default value: 0.
        """        
        if not self._initialized:
            self._init_weights()

        # useful quantities
        n = v.shape[0]
        w, bv, bh = self.w, self.bv, self.bh

        # old gradients for momentum term
        dw, dbv, dbh = self._delta
        
        # first update of the hidden units for the data term
        ph_data, h_data = self._sample_h(v)
        # n updates of both v and h for the model term
        h_model = h_data.copy()
        for i in range(n_updates):
            pv_model, v_model = self._sample_v(h_model)
            ph_model, h_model = self._sample_h(v_model)
        
        # update w
        data_term = mult(v.T, ph_data)
        model_term = mult(v_model.T, ph_model)
        dw = momentum*dw + epsilon*((data_term - model_term)/n - decay*w)
        w += dw
        
        # update bv
        data_term = v.sum(axis=0)
        model_term = v_model.sum(axis=0)
        dbv = momentum*dbv + epsilon*((data_term - model_term)/n)
        bv += dbv

        # update bh
        data_term = ph_data.sum(axis=0)
        model_term = ph_model.sum(axis=0)
        dbh = momentum*dbh + epsilon*((data_term - model_term)/n)
        bh += dbh

        self._delta = (dw, dbv, dbh)
        self._train_err = float(((v-v_model)**2.).sum())

        if verbose:
            print 'training error', self._train_err/v.shape[0]
            ph, h = self._sample_h(v)
            print 'energy', self._energy(v, ph).sum()

    def _stop_training(self):
        #del self._delta
        #del self._train_err
        pass

    # execution methods
        
    def is_invertible(self):
        return False

    def _pre_inversion_checks(self, y):
        self._if_training_stop_training()
        # control the dimension of y
        self._check_output(y)

    def sample_h(self, v):
        """Sample the hidden variables given observations v.

        Returns a tuple (prob_h, h), where prob_h[n,i] is the
        probability that variable 'i' is one given the observations
        v[n,:], and h[n,i] is a sample from the posterior probability."""

        self._pre_execution_checks(v)
        return self._sample_h(v)

    def sample_v(self, h):
        """Sample the observed variables given hidden variable state h.

        Returns a tuple (prob_v, v), where prob_v[n,i] is the
        probability that variable 'i' is one given the hidden variables
        h[n,:], and v[n,i] is a sample from that conditional probability."""

        self._pre_inversion_checks(h)
        return self._sample_v(h)

    def _energy(self, v, h):
        return (-mult(v, self.bv) - mult(h, self.bh) -
                (mult(v, self.w)*h).sum(axis=1))

    def energy(self, v, h):
        """Compute the energy of the RBM given observed variables state 'v' and
        hidden variables state 'h'."""
        return self._energy(v, h)

    def _execute(self, v, return_probs=True):
        """If 'return_probs' is True, returns the probability of the
        hidden variables h[n,i] being 1 given the observations v[n,:].
        If 'return_probs' is False, return a sample from that probability.
        """
        probs, h = self._sample_h(v)
        if return_probs:
            return probs
        else:
            return h

class RBMWithLabelsNode(RBMNode):
    """Restricted Boltzmann Machine with softmax labels. An RBM is an
    undirected probabilistic network with binary variables. In this
    case, the node is partitioned into a set of observed ('visible')
    variables, a set of hidden ('latent') variables, and a set of
    label variables (also observed), only one of which is active at
    any time. The node is able to learn associations between the
    visible variables and the labels.

    By default, the 'execute' function returns the *probability* of
    one of the hiden variables being equal to 1 given the input.

    Use the 'sample_v' function to sample from the observed variables
    (visible and labels) given a setting of the hidden variables, and
    'sample_h' to do the opposite. The 'energy' function can be used
    to compute the energy of a given setting of all variables.

    The network is trained by Contrastive Divergence, as described in
    Hinton, G. E. (2002). Training products of experts by minimizing
    contrastive divergence. Neural Computation, 14(8):1711-1800

    Internal variables of interest:
    self.w -- generative weights between hidden and observed variables
    self.bv -- bias vector of the observed variables
    self.bh -- bias vector of the hidden variables

    For more information on RBMs with labels, see
    
    Geoffrey E. Hinton (2007) Boltzmann machine. Scholarpedia, 2(5):1668
    
    Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning
    algorithm for deep belief nets. Neural Computation, 18:1527-1554. 
    """

    def __init__(self, hidden_dim, labels_dim, visible_dim=None, dtype=None):
        super(RBMWithLabelsNode, self).__init__(None, None, dtype)
        
        self._labels_dim = labels_dim
        if visible_dim is not None:
            self.input_dim = visible_dim+labels_dim

        self.output_dim = hidden_dim
        self._initialized = False

    def _get_supported_dtypes(self):
        return ['float32', 'float64']

    def _set_input_dim(self, n):
        self._input_dim = n 
        self._visible_dim = n - self._labels_dim

    def _sample_v(self, h, sample_l=False, concatenate=True):
        # returns  P(v=1|h,W,b), a sample from it, P(l=1|h,W,b),
        # and a sample from it

        ldim, vdim = self._labels_dim, self._visible_dim

        # activation
        a = self.bv + mult(h, self.w.T)
        av, al = a[:, :vdim], a[:, vdim:]
        
        # ## visible units: logistic activation
        probs_v = 1./(1. + exp(-av))
        v = (probs_v > random(probs_v.shape)).astype('d')
        
        # ## label units: softmax activation
        # subtract maximum to regularize exponent
        exponent = al - rrep(al.max(axis=1), ldim)
        probs_l = exp(exponent)
        probs_l /= rrep(probs_l.sum(axis=1), ldim)

        if sample_l:
            # ?? todo: I'm sure this can be optimized
            l = numx.zeros((h.shape[0], ldim))
            for t in range(h.shape[0]):
                l[t, :] = mdp.numx_rand.multinomial(1, probs_l[t, :])
        else:
            l = probs_l.copy()

        if concatenate:
            probs = numx.concatenate((probs_v, probs_l), axis=1)
            x = numx.concatenate((v, l), axis=1)
            return probs, x
        else:
            return probs_v, probs_l, v, l
    
    # execution methods

    def sample_h(self, v, l):
        """Sample the hidden variables given observations v and labels l.

        Returns a tuple (prob_h, h), where prob_h[n,i] is the
        probability that variable 'i' is one given the observations
        v[n,:] and the labels l[n,:],and h[n,i] is a sample from
        the posterior probability."""

        x = numx.concatenate((v, l), axis=1)
        self._pre_execution_checks(x)
        return self._sample_h(x)

    def sample_v(self, h):
        """Sample the observed variables given hidden variable state h.

        Returns a tuple (prob_v, probs_l, v, l), where prob_v[n,i] is
        the probability that the visible variable 'i' is one given the
        hidden variables h[n,:], and v[n,i] is a sample from that
        conditional probability. prob_l and l have similar
        interpretations for the label variables. Note that the labels
        are activated using a softmax function, so that only one label
        can be active at any time."""

        self._pre_inversion_checks(h)
        
        probs_v, probs_l, v, l = self._sample_v(h, sample_l=True,
                                                concatenate=False)
        return probs_v, probs_l, v, l

    def energy(self, v, h, l):
        """Compute the energy of the RBM given observed variables state 'v'
        and 'l', and hidden variables state 'h'."""
        
        x = numx.concatenate((v, l), axis=1)
        return self._energy(x, h)

    def execute(self, v, l, return_probs = True):
        """If 'return_probs' is True, returns the probability of the
        hidden variables h[n,i] being 1 given the observations v[n,:]
        and l[n,:].  If 'return_probs' is False, return a sample from
        that probability.
        """
        x = numx.concatenate((v, l), axis=1)
        self._pre_execution_checks(x)
        
        probs, h = self._sample_h(self._refcast(x))
        if return_probs:
            return probs
        else:
            return h

    def is_invertible(self):
        return False

    def train(self, v, l, n_updates=1, epsilon=0.1, decay=0., momentum=0.,
              verbose=False):
        """Update the internal structures according to the visible data 'v'
        and the labels 'l'.
        The training is performed using Contrastive Divergence (CD).

        v -- a binary matrix having different variables on different columns
             and observations on the rows
        l -- a binary matrix having different variables on different columns
             and observations on the rows. Only one value per row should be 1.
        n_updates -- number of CD iterations. Default value: 1
        epsilon -- learning rate. Default value: 0.1
        decay -- weight decay term. Default value: 0.
        momentum -- momentum term. Default value: 0.
        """

        if not self.is_training():
            errstr = "The training phase has already finished."
            raise mdp.TrainingFinishedException(errstr)

        x = numx.concatenate((v, l), axis=1)
        self._check_input(x)

        self._train_phase_started = True
        self._train_seq[self._train_phase][0](self._refcast(x),
                                              n_updates=n_updates,
                                              epsilon=epsilon,
                                              decay=decay,
                                              momentum=momentum,
                                              verbose=verbose)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.