parallelhinet.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » parallel » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » parallel » parallelhinet.py
"""
Parallel versions of hinet nodes.

Note that internal nodes are referenced instead of copied, in order to save
memory.
"""

import mdp
import mdp.hinet as hinet

import parallelnodes


class ParallelFlowNode(hinet.FlowNode, parallelnodes.ParallelExtensionNode):
    """Parallel version of FlowNode."""
    
    def _fork(self):
        """Reference the needed part of the _flow and fork the training node.
        
        If the fork() of the current node fails the exception is not caught 
        here (but will for example be caught in an encapsulating ParallelFlow). 
        """
        i_train_node = 0  # index of current training node
        while not self._flow[i_train_node].is_training():
            i_train_node += 1
        node_list = self._flow[:i_train_node]
        node_list.append(self._flow[i_train_node].fork())
        return self.__class__(mdp.Flow(node_list))
    
    def _join(self, forked_node):
        """Join the last node from the given forked _flow into this FlowNode."""
        i_node = len(forked_node._flow) - 1
        self._flow[i_node].join(forked_node._flow[i_node])


class ParallelLayer(hinet.Layer, parallelnodes.ParallelExtensionNode):
    """Parallel version of a Layer."""
    
    def _fork(self):
        """Fork or copy all the nodes in the layer to fork the layer."""
        forked_nodes = []
        for node in self.nodes:
            if node.is_training():
                forked_nodes.append(node.fork())
            else:
                forked_nodes.append(node)
        return self.__class__(forked_nodes)
        
    def _join(self, forked_node):
        """Join the trained nodes from the forked layer."""
        for i_node, layer_node in enumerate(self.nodes):
            if layer_node.is_training():
                layer_node.join(forked_node.nodes[i_node])


class ParallelCloneLayer(hinet.CloneLayer, parallelnodes.ParallelExtensionNode):
    """Parallel version of CloneLayer class."""
    
    def _fork(self):
        """Fork the internal node in the clone layer."""
        return self.__class__(self.node.fork(), n_nodes=len(self.nodes))
    
    def _join(self, forked_node):
        """Join the internal node in the clone layer."""
        self.node.join(forked_node.node)
        
        
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.