thread_schedule.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » parallel » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » parallel » thread_schedule.py
"""
Thread based scheduler for distribution across multiple CPU cores.
"""

import threading
import time

from scheduling import Scheduler,cpu_count

SLEEP_TIME = 0.1  # time spend sleeping when waiting for a thread to finish


class ThreadScheduler(Scheduler):
    """Thread based scheduler.
    
    Because of the GIL this only makes sense if most of the time is spend in
    numpy calculations (or some other external non-blocking C code) or for IO,
    but can be more efficient than ProcessScheduler because of the
    shared memory.
    """

    def __init__(self, result_container=None, verbose=False, n_threads=1):
        """Initialize the scheduler.
        
        result_container -- ResultContainer used to store the results.
        verbose -- Set to True to get progress reports from the scheduler
            (default value is False).
        n_threads -- Number of threads used in parallel. If None (default)
            then the number of detected CPU cores is used.
        """
        super(ThreadScheduler, self).__init__(
                                            result_container=result_container,
                                            verbose=verbose)
        if n_threads:
            self._n_threads = n_threads
        else:
            self._n_threads = cpu_count()
        self._n_active_threads = 0
        
    def _process_task(self, data, task_callable, task_index):
        """Add a task, if possible without blocking.
        
        It blocks when the maximum number of threads is reached (given by
        n_threads) or when the system is not able to start a new thread.
        """
        task_started = False
        while not task_started:
            if not self._n_threads - self._n_active_threads:
                # release lock for other threads and wait
                self._lock.release()
                time.sleep(SLEEP_TIME)
                self._lock.acquire()
            else:
                try:
                    self._lock.release()
                    task_callable = task_callable.fork()
                    thread = threading.Thread(target=self._task_thread,
                                              args=(data, task_callable,
                                                    task_index))
                    thread.start()
                    task_started = True
                except thread.error:
                    if self.verbose:
                        print ("unable to create new thread," 
                               " waiting 2 seconds...")
                    time.sleep(2)
                    
    def _task_thread(self, data, task_callable, task_index): 
        """Thread function which processes a single task."""
        result = task_callable(data)
        self._store_result(result, task_index)
        self._n_active_threads -= 1
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.