benchmark_mdp.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » test » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » test » benchmark_mdp.py
"""These are some benchmark functions for MDP.
"""

import mdp
from mdp.utils import symeig
from mdp.utils import matmult

numx = mdp.numx
numx_rand = mdp.numx_rand
numx_fft = mdp.numx_fft

####### benchmark function

def matmult_c_MDP_benchmark(dim):
    """    This benchmark multiplies two contiguous matrices using the
    MDP internal matrix multiplication routine.
    First argument matrix dimensionality"""
    a = numx_rand.random((dim,dim))
    b = numx_rand.random((dim,dim))
    out = mult(a,b)

def matmult_c_scipy_benchmark(dim):
    """    This benchmark multiplies two contiguous matrices using the
    scipy internal matrix multiplication routine.
    First argument matrix dimensionality"""
    a = numx_rand.random((dim,dim))
    b = numx_rand.random((dim,dim))
    out = numx.dot(a,b)
    
def matmult_n_MDP_benchmark(dim):
    """    This benchmark multiplies two non-contiguous matrices using the
    MDP internal matrix multiplication routine.
    First argument matrix dimensionality"""
    a = numx_rand.random((dim,dim)).T
    b = numx_rand.random((dim,dim)).T
    out = mult(a,b)

def matmult_n_scipy_benchmark(dim):
    """    This benchmark multiplies two non-contiguous matrices using the
    scipy internal matrix multiplication routine.
    First argument matrix dimensionality"""
    a = numx_rand.random((dim,dim)).T
    b = numx_rand.random((dim,dim)).T
    out = numx.dot(a,b)

def matmult_cn_MDP_benchmark(dim):
    """    This benchmark multiplies a contiguous matrix with a
    non-contiguous matrix using the MDP internal matrix multiplication
    routine.
    First argument matrix dimensionality"""
    a = numx_rand.random((dim,dim)).T
    b = numx_rand.random((dim,dim))
    out = mult(a,b)

def matmult_cn_scipy_benchmark(dim):
    """    This benchmark multiplies a contiguous matrix with a
    non-contiguous matrix using the scipy internal matrix multiplication
    routine.
    First argument matrix dimensionality"""
    a = numx_rand.random((dim,dim)).T
    b = numx_rand.random((dim,dim))
    out = numx.dot(a,b)

def quadratic_expansion_benchmark(dim, len, times):
    """    This benchmark expands random data of shape (len, dim)
    'times' times.
    Arguments: (dim,len,times)."""
    a = numx_rand.random((len,dim))
    qnode = mdp.nodes.QuadraticExpansionNode()
    for i in xrange(times):
        qnode(a)
        
def polynomial_expansion_benchmark(dim, len, degree, times):
    """    This benchmark expands random data of shape (len, dim)
    'times' times in the space of polynomials of degree 'degree'.
    Arguments: (dim,len,degree,times)."""
    numx_rand.seed(4253529)
    a = numx_rand.random((len,dim))
    pnode = mdp.nodes.PolynomialExpansionNode(degree)
    for i in xrange(times):
        pnode(a)

# ISFA benchmark

def _tobias_mix(src):
    mix = src.copy()
    mix[:,0]=(src[:,1]+3*src[:,0]+6)*numx.cos(1.5*numx.pi*src[:,0])
    mix[:,1]=(src[:,1]+3*src[:,0]+6)*numx.sin(1.5*numx.pi*src[:,0])
    return mix

def _get_random_slow_sources(nsrc, distr_fun):
    # nsrc: number of sources
    # distr_fun: random numbers function
    
    src = distr_fun(size=(50000, nsrc))
    fsrc = numx_fft.rfft(src, axis=0)
    # enforce different time scales
    for i in range(nsrc):
        fsrc[5000+(i+1)*1000:,i] = 0.
    src = numx_fft.irfft(fsrc,axis=0)
    return src
    
def isfa_spiral_benchmark():
    """    Apply ISFA to twisted data."""
    numx_rand.seed(116599099)
    # create independent sources
    src = _get_random_slow_sources(2, numx_rand.laplace)
    # subtract mean and rescale between -1 and 1
    src -= src.mean(axis=0)
    src /= abs(src).max()
    # apply nonlinear "twist" transformation
    exp_src = _tobias_mix(src)
    # train
    flow = mdp.Flow([mdp.nodes.PolynomialExpansionNode(5),
                     mdp.nodes.SFANode(),
                     mdp.nodes.ISFANode(lags=30, whitened=False,
                                        sfa_ica_coeff=[1.,300.],
                                        eps_contrast=1e-5,
                                        output_dim=2, verbose=False)])
    flow.train(exp_src)

def sfa_benchmark():
    """    Apply SFA to twisted data."""
    numx_rand.seed(424507)
    # create independent sources
    nsrc = 15
    src = _get_random_slow_sources(nsrc, numx_rand.normal)
    src = src[:5000,:]
    src = mult(src, numx_rand.uniform(size=(nsrc, nsrc))) \
          + numx_rand.uniform(size=nsrc)
    # train
    flow = mdp.Flow([mdp.nodes.PolynomialExpansionNode(3),
                     mdp.nodes.PCANode(output_dim = 100),
                     mdp.nodes.SFANode(output_dim = 30)])
    #src = src.reshape(1000,5,nsrc)
    flow.train([None, [src], [src]])
    
#### benchmark tools

# function used to measure time
import time
TIMEFUNC = time.time

def timeit(func,*args,**kwargs):
    """Return function execution time in 1/100ths of a second."""
    tstart = TIMEFUNC()
    func(*args,**kwargs)
    return (TIMEFUNC()-tstart)*100.

def _random_seed():
    import sys
    seed = int(numx_rand.randint(2**31-1))
    numx_rand.seed(seed)
    sys.stderr.write("Random Seed: " + str(seed)+'\n')

def run_benchmarks(bench_funcs, time_digits=15):

    results_str = '| %%s | %%%d.2f |' % time_digits
    label_str = '| %%s | %s |' % 'Time (sec/100)'.center(time_digits)

    tstart = TIMEFUNC()

    # loop over all benchmarks functions
    for func, args_list in bench_funcs:
        # number of combinations of arguments(cases)
        ncases = len(args_list)
        funcname = func.__name__[:-10]

        # loop over all cases
        for i in range(ncases):
            args = args_list[i]

            # format description string
            descr = funcname + str(tuple(args))
            if i==0:
                # print summary table header
                descrlen = len(descr)+6
                results_strlen = time_digits+descrlen+7
                print '\nTiming results (%s, %d cases):' % (funcname, ncases)
                print func.__doc__
                print '+'+'-'*(results_strlen-2)+'+'
                print label_str % 'Description'.center(descrlen)
                print '+'+'-'*(results_strlen-2)+'+'        

            # execute function
            t = timeit(func, *args)

            # print summary table entry
            print results_str % (descr.center(descrlen), t)

        # print summary table tail
        print '+'+'-'*(results_strlen-2)+'+'
        
    print '\nTotal running time:', (TIMEFUNC()-tstart)*100.

####### /benchmark function

POLY_EXP_ARGS = [(2**i, 100, j, 200) for j in range(2,5) for i in range(2,4)]

#if mdp.numx_description in ['symeig', 'scipy', 'numpy']:
#    MUL_MTX_DIMS = [[2**i] for i in range(4,11)]
#    # list of (benchmark function, list of arguments)
#    BENCH_FUNCS = [(matmult_c_MDP_benchmark, MUL_MTX_DIMS),
#                   (matmult_c_scipy_benchmark, MUL_MTX_DIMS),
#                   (matmult_n_MDP_benchmark, MUL_MTX_DIMS),
#                   (matmult_n_scipy_benchmark, MUL_MTX_DIMS),
#                   (matmult_cn_MDP_benchmark, MUL_MTX_DIMS),
#                   (matmult_cn_scipy_benchmark, MUL_MTX_DIMS),
#                   (polynomial_expansion_benchmark, POLY_EXP_ARGS)]
#else:
#    BENCH_FUNCS = [(polynomial_expansion_benchmark, POLY_EXP_ARGS)]
BENCH_FUNCS = [(polynomial_expansion_benchmark, POLY_EXP_ARGS),
               (isfa_spiral_benchmark, [[]]),
               (sfa_benchmark, [[]])]

def get_benchmarks():
    return BENCH_FUNCS

if __name__ == "__main__":
    print "Running benchmarks: "
    run_benchmarks(get_benchmarks())
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.