test_contrib.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » test » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » test » test_contrib.py
"""These are test functions for MDP contributed nodes.

Run them with:
>>> import mdp
>>> mdp.test("contrib")

"""

# import ALL stuff we use for standard nodes and delete the
# stuff we don't need. I know, this is a dirty trick.
from test_nodes import *

mc = mdp.nodes

import itertools
import random

def _s_shape(theta):
    """
    returns x,y
      a 2-dimensional S-shaped function
      for theta ranging from 0 to 1
    """
    t = 3*numx.pi * (theta-0.5)
    x = numx.sin(t)
    y = numx.sign(t)*(numx.cos(t)-1)
    return x,y

def _s_shape_1D(n):
    t = numx.linspace(0., 1., n)
    x, z = _s_shape(t)
    y = numx.linspace(0., 5., n)
    return x, y, z, t

def _s_shape_2D(nt, ny):
    t, y = numx.meshgrid(numx.linspace(0., 1., nt),
                         numx.linspace(0., 2., ny))
    t = t.flatten()
    y = y.flatten()
    x, z = _s_shape(t)
    return x, y, z, t

def _compare_neighbors(orig, proj, k):
    n = orig.shape[0]
    err = numx.zeros((n,))
    # compare neighbors indices
    for i in range(n):
        # neighbors in original space
        dist = orig - orig[i,:]
        orig_nbrs = numx.argsort((dist**2).sum(1))[1:k+1]
        orig_nbrs.sort()
        # neighbors in projected space
        dist = proj - proj[i,:]
        proj_nbrs = numx.argsort((dist**2).sum(1))[1:k+1]
        proj_nbrs.sort()
        for idx in orig_nbrs:
            if idx not in proj_nbrs:
                err[i] += 1
    return err

def _randomly_filled_hypercube(widths, num_elem=1000):
    """Fills a hypercube with given widths, centred at the origin.
    """
    p = []
    for i in xrange(num_elem):
        rand_data = numx.random.random(len(widths))
        rand_data = [w*(d - 0.5) for d, w in zip(rand_data, widths)]
        p.append(tuple(rand_data))
    return p

def _randomly_filled_hyperball(dim, radius, num_elem=1000):
    """Fills a hyperball with a number of random elements.
    """
    r = numx.random.random(num_elem)
    points = numx.random.random((num_elem, dim))
    for i in xrange(len(points)):
        norm = numx.linalg.norm(points[i])
        scale = pow(r[i], 1./dim)
        points[i] = points[i] * radius * scale / norm
    return points

def _random_clusters(positions, radius=1, num_elem=1000):
    """Puts random clusters with num_elem elements at the given positions.
    positions - a list of tuples
    """
    data = []
    for p in positions:
        dim = len(p)
        ball = _randomly_filled_hyperball(dim, radius, num_elem)
        ball = [numx.array(b) + numx.array(p) for b in ball]
        data.append(ball)
    return data

def _linear_separable_data(positions, labels, radius=1, num_elem=1000, shuffled=False):
    """Tries to make up some linear separable data.
    num_elem - the number of elements in each
    """
    assert len(positions) == len(labels)
    
    data = numx.vstack( _random_clusters(positions, radius, num_elem) )
    #data = numx.vstack( (numx.random.random( (num_elem,2) ) - dist,
    #                     numx.random.random( (num_elem,2) ) + dist) )
    a_labels = numx.hstack(map(lambda x: [x] * num_elem, labels))
    if shuffled:
        ind = range(len(data))
        random.shuffle(ind)
        return data[ind], a_labels[ind]
    return data, a_labels

class ContribTestSuite(NodesTestSuite):
    def __init__(self, testname=None):
        NodesTestSuite.__init__(self, testname=testname)
        self.mat_dim = (100, 3)
        self._cleanup_tests()

    def _set_nodes(self):
        self._nodes = [mc.JADENode,
                       mc.NIPALSNode,
                       (mc.XSFANode, [(mc.PolynomialExpansionNode, (1,), {}),
                                      (mc.PolynomialExpansionNode, (1,), {}),
                                      True],None),
                       (mc.LLENode, [3, 0.001, False], None),
                       (mc.LLENode, [3, 0.001, True], None),
                       (mc.HLLENode, [10, 0.001, False], None),
                       (mc.HLLENode, [10, 0.001, True], None)]

    def _fastica_test_factory(self):
        # we don't want the fastica tests here
        pass

    def _cleanup_tests(self):
        # remove all nodes test that belong to the NodesTestSuite
        # yes, I know is a dirty trick.
        test_ids = [x.id() for x in self._tests]
        i = 0
        for test in test_ids:
            if test[:4] == "test":
                try:
                    getattr(NodesTestSuite, test)
                    # if we did not get an exception
                    # the test belongs to NodesTestSuite
                    self._tests.pop(i)
                    i -= 1
                except Exception, e:
                    pass
            i += 1

    def testJADENode(self):
        trials = 3
        for i in range(trials):
            try: 
                ica = mdp.nodes.JADENode(limit = 10**(-self.decimal))
                ica2 = ica.copy()
                self._testICANode(ica, rand_func=numx_rand.exponential)
                self._testICANodeMatrices(ica2)
                return
            except Exception, exc:
                pass
        raise exc
    
    def testNIPALSNode(self):
        line_x = numx.zeros((1000,2),"d")
        line_y = numx.zeros((1000,2),"d")
        line_x[:,0] = numx.linspace(-1,1,num=1000,endpoint=1)
        line_y[:,1] = numx.linspace(-0.2,0.2,num=1000,endpoint=1)
        mat = numx.concatenate((line_x,line_y))
        des_var = std(mat,axis=0)
        utils.rotate(mat,uniform()*2*numx.pi)
        mat += uniform(2)
        pca = mdp.nodes.NIPALSNode(conv=1E-15, max_it=1000)
        pca.train(mat)
        act_mat = pca.execute(mat)
        assert_array_almost_equal(mean(act_mat,axis=0),\
                                  [0,0],self.decimal)
        assert_array_almost_equal(std(act_mat,axis=0),\
                                  des_var,self.decimal)
        # test a bug in v.1.1.1, should not crash
        pca.inverse(act_mat[:,:1])
        # try standard PCA on the same data and compare the eigenvalues
        pca2 = mdp.nodes.PCANode()
        pca2.train(mat)
        pca2.stop_training()
        assert_array_almost_equal(pca2.d, pca.d, self.decimal)
        
    def testNIPALSNode_desired_variance(self):
        mat, mix, inp = self._get_random_mix(mat_dim=(1000, 3))
        # first make them white
        pca = mdp.nodes.WhiteningNode()
        pca.train(mat)
        mat = pca.execute(mat)
        # set the variances
        mat *= [0.6,0.3,0.1]
        #mat -= mat.mean(axis=0)
        pca = mdp.nodes.NIPALSNode(output_dim=0.8)
        pca.train(mat)
        out = pca.execute(mat)
        # check that we got exactly two output_dim:
        assert pca.output_dim == 2
        assert out.shape[1] == 2
        # check that explained variance is > 0.8 and < 1
        assert (pca.explained_variance > 0.8 and pca.explained_variance < 1)

    def testLLENode(self):
        # 1D S-shape in 3D
        n, k = 50, 2
        x, y, z, t = _s_shape_1D(n)
        data = numx.asarray([x,y,z]).T

        res = mdp.nodes.LLENode(k, output_dim=1, svd=False)(data)
        # check that the neighbors are the same
        err = _compare_neighbors(data, res, k)
        assert err.max() == 0

        # with svd=True
        res = mdp.nodes.LLENode(k, output_dim=1, svd=True)(data)
        err = _compare_neighbors(data, res, k)
        assert err.max() == 0
        return
    
        #TODO: fix this test!
        # 2D S-shape in 3D
        nt, ny = 40, 15
        n, k = nt*ny, 8
        x, y, z, t = _s_shape_2D(nt, ny)
        data = numx.asarray([x,y,z]).T
        res = mdp.nodes.LLENode(k, output_dim=2, svd=True)(data)
        res[:,0] /= res[:,0].std()
        res[:,1] /= res[:,1].std()

        # test alignment
        yval = y[::nt]
        tval = t[:ny]
        for yv in yval:
            idx = numx.nonzero(y==yv)[0]
            err = abs(res[idx,1]-res[idx[0],1]).max()
            assert err<0.01,\
                   'Projection should be aligned as original space: %s'%(str(err))
        for tv in tval:
            idx = numx.nonzero(t==tv)[0]
            err = abs(res[idx,0]-res[idx[0],0]).max()
            assert err<0.01,\
                   'Projection should be aligned as original space: %s'%(str(err))

    def testLLENode_outputdim_float_bug(self):
        # 1D S-shape in 3D, output_dim
        n, k = 50, 2
        x, y, z, t = _s_shape_1D(n)
        data = numx.asarray([x,y,z]).T

        res = mdp.nodes.LLENode(k, output_dim=0.9, svd=True)(data)
        # check that the neighbors are the same
        err = _compare_neighbors(data, res, k)
        assert err.max() == 0

    def testHLLENode(self):
        # 1D S-shape in 3D
        n, k = 250, 4
        x, y, z, t = _s_shape_1D(n)
        data = numx.asarray([x,y,z]).T

        res = mdp.nodes.HLLENode(k, r=0.001, output_dim=1, svd=False)(data)
        # check that the neighbors are the same
        err = _compare_neighbors(data, res, k)
        assert err.max() == 0

        # with svd=True
        res = mdp.nodes.HLLENode(k, r=0.001, output_dim=1, svd=True)(data)
        err = _compare_neighbors(data, res, k)
        assert err.max() == 0
        
        # 2D S-shape in 3D
        nt, ny = 40, 15
        n, k = nt*ny, 8
        x, y, z, t = _s_shape_2D(nt, ny)
        data = numx.asarray([x,y,z]).T
        res = mdp.nodes.HLLENode(k, r=0.001, output_dim=2, svd=False)(data)
        res[:,0] /= res[:,0].std()
        res[:,1] /= res[:,1].std()

        # test alignment
        yval = y[::nt]
        tval = t[:ny]
        for yv in yval:
            idx = numx.nonzero(y==yv)[0]
            assert numx.all(res[idx,1]-res[idx[0],1]<1e-2),\
                   'Projection should be aligned as original space'
        for tv in tval:
            idx = numx.nonzero(t==tv)[0]
            assert numx.all(res[idx,0]-res[idx[0],0]<1e-2),\
                   'Projection should be aligned as original space'

    def testXSFANode(self):
        T = 5000
        N = 3
        src = numx_rand.random((T, N))*2-1
        # create three souces with different speeds
        fsrc = numx_fft.rfft(src, axis=0)

        for i in range(N):
            fsrc[(i+1)*(T/10):, i] = 0.

        src = numx_fft.irfft(fsrc,axis=0)
        src -= src.mean(axis=0)
        src /= src.std(axis=0)

        #mix = sigmoid(numx.dot(src, mdp.utils.random_rot(3)))
        mix = src

        flow = mdp.Flow([mc.XSFANode()])
        # let's test also chunk-mode training
        flow.train([[mix[:T/2, :], mix[T/2:, :]]])
        
        out = flow(mix)
        #import bimdp
        #tr_filename = bimdp.show_training(flow=flow,
        #                                  data_iterators=[[mix[:T/2, :], mix[T/2:, :]]])
        #ex_filename, out = bimdp.show_execution(flow, x=mix)

        corrs = mdp.utils.cov_maxima(mdp.utils.cov2(out, src))
        assert min(corrs) > 0.8, ('source/estimate minimal'
                                  ' covariance: %g' % min(corrs))

    def testShogunSVMClassifier(self):
        if not hasattr(mdp.nodes,'ShogunSVMClassifier'):
            return
        # TODO: Implement parameter ranges
        num_train = 100
        num_test = 50
        dist = 1
        width = 2.1
        C = 1
        epsilon = 1e-5
        for positions in [((1,), (-1,)),
                          ((1,1), (-1,-1)),
                          ((1,1,1), (-1,-1,1)),
                          ((1,1,1,1), (-1,1,1,1)),
                          ((1,1,1,1), (-1,-1,-1,-1)),
                          ((1,1), (-1,-1), (1, -1), (-1, 1))
                          ]:

            radius = 0.3

            if len(positions) == 2:
                labels = (-1, 1)
            elif len(positions) == 3:
                labels = (-1, 1, 1)
            elif len(positions) == 4:
                labels = (-1, -1, 1, 1)

            traindata_real, trainlab = _linear_separable_data(positions, labels,
                                                              radius, num_train)
            testdata_real, testlab = _linear_separable_data(positions, labels,
                                                            radius, num_test)
            
            
            classifiers = ['GMNPSVM', 'GNPPSVM', 'GPBTSVM', 'KernelPerceptron',
                           'LDA', 'LibSVM', # 'LibSVMOneClass',# 'MPDSVM', 
                           'Perceptron', 'SVMLin']
            kernels = ['PolyKernel', 'LinearKernel', 'SigmoidKernel', 'GaussianKernel']
            
            #kernels = list(mdp.nodes.ShogunSVMClassifier.kernel_parameters.keys())
            combinations = {'classifier': classifiers,
                            'kernel': kernels}
            
            for comb in utils.orthogonal_permutations(combinations):
                # this is redundant but makes it clear,
                # what has been taken out deliberately
                if comb['kernel'] in ['PyramidChi2', 'Chi2Kernel']:
                    # We don't have good init arguments for these
                    continue
                if comb['classifier'] in ['LaRank', 'LibLinear', 'LibSVMMultiClass',
                                          'MKLClassification', 'MKLMultiClass',
                                          'MKLOneClass', 'MultiClassSVM', 'SVM',
                                          'SVMOcas', 'SVMSGD', 'ScatterSVM',
                                          'SubGradientSVM']:
                    # We don't have good init arguments for these and/or they work differently
                    continue
                
                # something does not work here: skipping
                if comb['classifier'] == 'GPBTSVM' and comb['kernel'] == 'LinearKernel':
                    continue
                
                sg_node = mdp.nodes.ShogunSVMClassifier(classifier=comb['classifier'])
                
                if sg_node.classifier.takes_kernel:
                    sg_node.set_kernel(comb['kernel'])
                    
                # train in two chunks to check update mechanism
                sg_node.train( traindata_real[:num_train], trainlab[:num_train] )
                sg_node.train( traindata_real[num_train:], trainlab[num_train:] )
                
                assert sg_node.input_dim == len(traindata_real.T)
                
                out = sg_node.label(testdata_real)
                
                if sg_node.classifier.takes_kernel:
                    # check that the kernel has stored all our training vectors
                    assert sg_node.classifier.kernel.get_num_vec_lhs() == num_train * len(positions)
                    # check that the kernel has also stored the latest classification vectors in rhs
                    assert sg_node.classifier.kernel.get_num_vec_rhs() == num_test * len(positions)
                
                # Test also for inverse
                worked = numx.all(numx.sign(out) == testlab) or \
                         numx.all(numx.sign(out) == -testlab)
                failed = not worked

                should_fail = False
                if len(positions) == 2:
                    if comb['classifier'] in ['LibSVMOneClass', 'KernelPerceptron',
                                              'GMNPSVM']:
                        should_fail = True
                    if comb['classifier'] == 'GPBTSVM' and \
                       comb['kernel'] in ['LinearKernel']:
                        should_fail = True
                
                # xor problem
                if len(positions) == 4:
                    if comb['classifier'] in ['LibSVMOneClass', 'SVMLin', 'Perceptron',
                                              'LDA', 'KernelPerceptron', 'GMNPSVM']:
                        should_fail = True
                    if comb['classifier'] == 'LibSVM' and \
                       comb['kernel'] in ['LinearKernel', 'SigmoidKernel']:
                        should_fail = True
                    if comb['classifier'] == 'GPBTSVM' and \
                       comb['kernel'] in ['LinearKernel', 'SigmoidKernel']:
                        should_fail = True
                    if comb['classifier'] == 'GNPPSVM' and \
                       comb['kernel'] in ['LinearKernel', 'SigmoidKernel']:
                        should_fail = True
                
                if should_fail:
                    msg = ("Classification should fail but did not in %s. Positions %s." %
                          (sg_node.classifier, positions))
                else:
                    msg = ("Classification should not fail but failed in %s. Positions %s." %
                          (sg_node.classifier, positions))
                
                assert should_fail == failed, msg

    def testLibSVMClassifier(self):
        if not hasattr(mdp.nodes, 'LibSVMClassifier'):
            return
        num_train = 100
        num_test = 50
        dist = 0.4
        width = 2.1
        C = 1
        epsilon = 1e-5
        for positions in [((1,), (-1,)),
                          ((1,1), (-1,-1)),
                          ((1,1,1), (-1,-1,1)),
                          ((1,1,1,1), (-1,1,1,1)),
                          ((1,1,1,1), (-1,-1,-1,-1))]:
            radius = 0.3

            traindata_real, trainlab = _linear_separable_data(positions, (-1, 1),
                                                              radius, num_train, True)
            testdata_real, testlab = _linear_separable_data(positions, (-1, 1),
                                                            radius, num_test, True)
        
            combinations = {'kernel': mdp.nodes.LibSVMClassifier.kernels,
                            'classifier': mdp.nodes.LibSVMClassifier.classifiers}
        
            for comb in utils.orthogonal_permutations(combinations):
                # Take out non-working cases
                if comb['classifier'] in ["ONE_CLASS"]:
                    continue
                if comb['kernel'] in ["SIGMOID"]:
                    continue
                
                svm_node = mdp.nodes.LibSVMClassifier()
                svm_node.set_kernel(comb['kernel'])
                svm_node.set_classifier(comb['classifier'])
                
                # train in two chunks to check update mechanism
                svm_node.train(traindata_real[:num_train], trainlab[:num_train])
                svm_node.train(traindata_real[num_train:], trainlab[num_train:])
                
                assert svm_node.input_dim == len(traindata_real.T)

                out = svm_node.label(testdata_real)

                testerr = numx.all(numx.sign(out) == testlab)
                assert testerr, ('classification error for ', comb)
                
                # we don't have ranks in our regression models
                if not comb['classifier'].endswith("SVR"):
                    pos1_rank = numx.array(svm_node.rank(numx.array([positions[0]])))
                    pos2_rank = numx.array(svm_node.rank(numx.array([positions[1]])))
                    
                    assert numx.all(pos1_rank == -pos2_rank)
                    assert numx.all(abs(pos1_rank) == 1)
                    assert numx.all(abs(pos2_rank) == 1)

def get_suite(testname=None):
    return ContribTestSuite(testname=testname)

if __name__ == '__main__':
    numx_rand.seed(1268049219)
    unittest.TextTestRunner(verbosity=2).run(get_suite())



www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.