test_parallelflows.py :  » Math » Modular-toolkit-for-Data-Processing » MDP-2.6 » mdp » test » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Modular toolkit for Data Processing 
Modular toolkit for Data Processing » MDP 2.6 » mdp » test » test_parallelflows.py

import unittest

import mdp
import mdp.parallel as parallel
from mdp import numx

import testing_tools

# TODO: add test with explicit parallel nodes mixed in

class TestParallelFlows(unittest.TestCase):

    def test_tasks(self):
        """Test parallel training and execution by running the tasks."""
        flow = parallel.ParallelFlow([
                            mdp.nodes.SFANode(output_dim=5),
                            mdp.nodes.PolynomialExpansionNode(degree=3),
                            mdp.nodes.SFANode(output_dim=20)])
        data_iterables = [[n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)], 
                          None, 
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)]]
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler)
        # parallel execution
        iterable = [n.random.random((20,10)) for _ in range(6)]
        flow.execute(iterable, scheduler=scheduler)
        
    def test_non_iterator(self):
        """Test parallel training and execution with a single array."""
        flow = parallel.ParallelFlow([
                            mdp.nodes.SFANode(output_dim=5),
                            mdp.nodes.PolynomialExpansionNode(degree=3),
                            mdp.nodes.SFANode(output_dim=20)])
        data_iterables = n.random.random((200,10))*n.arange(1,11) 
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler)
        # test execution
        x = n.random.random((100,10))
        flow.execute(x)
        
    def test_multiple_schedulers(self):
        """Test parallel flow training with multiple schedulers."""
        flow = parallel.ParallelFlow([
                            mdp.nodes.SFANode(output_dim=5),
                            mdp.nodes.PolynomialExpansionNode(degree=3),
                            mdp.nodes.SFANode(output_dim=20)])
        data_iterables = [[n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)], 
                          None, 
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)]]
        schedulers = [parallel.Scheduler(), None, parallel.Scheduler()]
        flow.train(data_iterables, scheduler=schedulers)
        # parallel execution
        iterable = [n.random.random((20,10)) for _ in range(6)]
        flow.execute(iterable, scheduler=parallel.Scheduler())
        
    def test_multiple_schedulers2(self):
        """Test parallel flow training with multiple schedulers (part 2)."""
        # now the first node is untrainable as well
        flow = parallel.ParallelFlow([
                            mdp.nodes.PolynomialExpansionNode(degree=2),
                            mdp.nodes.SFANode(output_dim=5),
                            mdp.nodes.PolynomialExpansionNode(degree=3),
                            mdp.nodes.SFANode(output_dim=20)])
        data_iterables = [None,
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)], 
                          None, 
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)]]
        schedulers = [None, parallel.Scheduler(), None, parallel.Scheduler()]
        flow.train(data_iterables, scheduler=schedulers)
        # parallel execution
        iterable = [n.random.random((20,10)) for _ in range(6)]
        flow.execute(iterable, scheduler=parallel.Scheduler())
        
    def test_multiphase(self):
        """Test parallel training and execution for nodes with multiple
        training phases.
        """
        sfa_node = mdp.nodes.SFANode(input_dim=10, output_dim=8)
        sfa2_node = mdp.nodes.SFA2Node(input_dim=8, output_dim=6)
        flownode = mdp.hinet.FlowNode(mdp.Flow([sfa_node, sfa2_node]))
        flow = parallel.ParallelFlow([
                            flownode,
                            mdp.nodes.PolynomialExpansionNode(degree=2),
                            mdp.nodes.SFANode(output_dim=5)])
        data_iterables = [[n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)], 
                          None, 
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)]]
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler)
        # test normal execution
        x = n.random.random([100,10])
        flow.execute(x)
        # parallel execution
        iterable = [n.random.random((20,10)) for _ in range(6)]
        flow.execute(iterable, scheduler=scheduler)
    
    def test_firstnode(self):
        """Test special case in which the first node is untrainable.
        
        This tests the proper initialization of the internal variables.
        """
        flow = parallel.ParallelFlow([
                            mdp.nodes.PolynomialExpansionNode(degree=2),
                            mdp.nodes.SFANode(output_dim=20)])
        data_iterables = [None, 
                           n.random.random((6,20,10))]
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler)
            
    def test_multiphase_checkpoints(self):
        """Test parallel checkpoint flow."""
        sfa_node = mdp.nodes.SFANode(input_dim=10, output_dim=8)
        sfa2_node = mdp.nodes.SFA2Node(input_dim=8, output_dim=6)
        flownode = mdp.hinet.FlowNode(mdp.Flow([sfa_node, sfa2_node]))
        flow = parallel.ParallelCheckpointFlow([
                            flownode,
                            mdp.nodes.PolynomialExpansionNode(degree=2),
                            mdp.nodes.SFANode(output_dim=5)])
        data_iterables = [[n.random.random((30,10)) for _ in range(6)], 
                          None, 
                          [n.random.random((30,10)) for _ in range(6)]]
        checkpoint = mdp.CheckpointFunction()
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler, checkpoints=checkpoint)
    
    def test_nonparallel1(self):
        """Test training for mixture of parallel and non-parallel nodes."""
        sfa_node = mdp.nodes.SFANode(input_dim=10, output_dim=8)
        # TODO: use a node with no parallel here
        sfa2_node = mdp.nodes.CuBICANode(input_dim=8)
        flownode = mdp.hinet.FlowNode(mdp.Flow([sfa_node, sfa2_node]))
        flow = parallel.ParallelFlow([
                            flownode,
                            mdp.nodes.PolynomialExpansionNode(degree=2),
                            mdp.nodes.SFANode(output_dim=5)])
        data_iterables = [[n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)], 
                          None, 
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)]]
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler)
        # test execution
        x = n.random.random([100,10])
        flow.execute(x)
        
    def test_nonparallel2(self):
        """Test training for mixture of parallel and non-parallel nodes."""
        # TODO: use a node with no parallel here
        sfa_node = mdp.nodes.SFANode(input_dim=10, output_dim=8)
        sfa2_node = mdp.nodes.SFA2Node(input_dim=8, output_dim=6)
        flownode = mdp.hinet.FlowNode(mdp.Flow([sfa_node, sfa2_node]))
        flow = parallel.ParallelFlow([
                            flownode,
                            mdp.nodes.PolynomialExpansionNode(degree=2),
                            mdp.nodes.SFANode(output_dim=5)])
        data_iterables = [[n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)], 
                          None, 
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)]]
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler)
        # test execution
        x = n.random.random([100,10])
        flow.execute(x)
        
    def test_nonparallel3(self):
        """Test training for non-parallel nodes."""
        # TODO: use a node with no parallel here
        sfa_node = mdp.nodes.SFANode(input_dim=10, output_dim=8)
        # TODO: use a node with no parallel here
        sfa2_node = mdp.nodes.SFA2Node(input_dim=8, output_dim=6)
        flow = parallel.ParallelFlow([sfa_node, sfa2_node])
        data_iterables = [[n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)], 
                          [n.random.random((30,10))*n.arange(1,11)
                           for _ in range(6)]]
        scheduler = parallel.Scheduler()
        flow.train(data_iterables, scheduler=scheduler)
        while flow.is_parallel_training:
            results = []
            while flow.task_available():
                task = flow.get_task()
                results.append(task())
            flow.use_results(results)
        # test execution
        x = n.random.random([100,10])
        flow.execute(x)
        
    
def get_suite(testname=None):
    # this suite just ignores the testname argument
    # you can't select tests by name here!
    suite = unittest.TestSuite()
    suite.addTest(unittest.makeSuite(TestParallelFlows))
    return suite
            
if __name__ == '__main__':
    unittest.main() 
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.