test_docscrape.py :  » Math » Numerical-Python » numpy » doc » sphinxext » tests » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Numerical Python 
Numerical Python » numpy » doc » sphinxext » tests » test_docscrape.py
# -*- encoding:utf-8 -*-

import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))

from docscrape import NumpyDocString,FunctionDoc,ClassDoc
from docscrape_sphinx import SphinxDocString,SphinxClassDoc
from nose.tools import *

doc_txt = '''\
  numpy.multivariate_normal(mean, cov, shape=None)

  Draw values from amultivariatenormaldistributionwithspecified import 
  mean and covariance.

  The multivariate normal or Gaussian distribution is a generalisation
  of the one-dimensional normal distribution to higher dimensions.

  Parameters
  ----------
  mean : (N,) ndarray
      Mean of the N-dimensional distribution.

      .. math::

         (1+2+3)/3

  cov : (N,N) ndarray
      Covariance matrix of the distribution.
  shape : tuple of ints
      Given a shape of, for example, (m,n,k), m*n*k samples are
      generated, and packed in an m-by-n-by-k arrangement.  Because
      each sample is N-dimensional, the output shape is (m,n,k,N).

  Returns
  -------
  out : ndarray
      The drawn samples, arranged according to `shape`.  If the
      shape given is (m,n,...), then the shape of `out` is is
      (m,n,...,N).

      In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
      value drawn from thedistribution. import 

  Warnings
  --------
  Certain warnings apply.

  Notes
  -----

  Instead of specifying the full covariance matrix, popular
  approximations include:

    - Spherical covariance (`cov` is a multiple of the identity matrix)
    - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

  This geometrical property can be seen in two dimensions by plotting
  generated data-points:

  >>> mean = [0,0]
  >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

  >>> x,y = multivariate_normal(mean,cov,5000).T
  >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

  Note that the covariance matrix must be symmetric and non-negative
  definite.

  References
  ----------
  .. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
         Processes," 3rd ed., McGraw-Hill Companies, 1991
  .. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
         2nd ed., Wiley, 2001.

  See Also
  --------
  some, other, funcs
  otherfunc : relationship

  Examples
  --------
  >>> mean = (1,2)
  >>> cov = [[1,0],[1,0]]
  >>> x = multivariate_normal(mean,cov,(3,3))
  >>> print x.shape
  (3, 3, 2)

  The following is probably true, given that 0.6 is roughly twice the
  standard deviation:

  >>> print list( (x[0,0,:] - mean) < 0.6 )
  [True, True]

  .. index:: random
     :refguide: random;distributions, random;gauss

  '''
doc = NumpyDocString(doc_txt)


def test_signature():
    assert doc['Signature'].startswith('numpy.multivariate_normal(')
    assert doc['Signature'].endswith('shape=None)')

def test_summary():
    assert doc['Summary'][0].startswith('Draw values')
    assert doc['Summary'][-1].endswith('covariance.')

def test_extended_summary():
    assert doc['Extended Summary'][0].startswith('The multivariate normal')

def test_parameters():
    assert_equal(len(doc['Parameters']), 3)
    assert_equal([n for n,_,_ in doc['Parameters']], ['mean','cov','shape'])

    arg, arg_type, desc = doc['Parameters'][1]
    assert_equal(arg_type, '(N,N) ndarray')
    assert desc[0].startswith('Covariance matrix')
    assert doc['Parameters'][0][-1][-2] == '   (1+2+3)/3'

def test_returns():
    assert_equal(len(doc['Returns']), 1)
    arg, arg_type, desc = doc['Returns'][0]
    assert_equal(arg, 'out')
    assert_equal(arg_type, 'ndarray')
    assert desc[0].startswith('The drawn samples')
    assert desc[-1].endswith('distribution.')

def test_notes():
    assert doc['Notes'][0].startswith('Instead')
    assert doc['Notes'][-1].endswith('definite.')
    assert_equal(len(doc['Notes']), 17)

def test_references():
    assert doc['References'][0].startswith('..')
    assert doc['References'][-1].endswith('2001.')

def test_examples():
    assert doc['Examples'][0].startswith('>>>')
    assert doc['Examples'][-1].endswith('True]')

def test_index():
    assert_equal(doc['index']['default'], 'random')
    print doc['index']
    assert_equal(len(doc['index']), 2)
    assert_equal(len(doc['index']['refguide']), 2)

def non_blank_line_by_line_compare(a,b):
    a = [l for l in a.split('\n') if l.strip()]
    b = [l for l in b.split('\n') if l.strip()]
    for n,line in enumerate(a):
        if not line == b[n]:
            raise AssertionError("Lines %s of a and b differ: "
                                 "\n>>> %s\n<<< %s\n" %
                                 (n,line,b[n]))
def test_str():
    non_blank_line_by_line_compare(str(doc),
"""numpy.multivariate_normal(mean, cov, shape=None)

Draw values from a multivariate normal distribution with specified
mean and covariance.

The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.

Parameters
----------
mean : (N,) ndarray
    Mean of the N-dimensional distribution.

    .. math::

       (1+2+3)/3

cov : (N,N) ndarray
    Covariance matrix of the distribution.
shape : tuple of ints
    Given a shape of, for example, (m,n,k), m*n*k samples are
    generated, and packed in an m-by-n-by-k arrangement.  Because
    each sample is N-dimensional, the output shape is (m,n,k,N).

Returns
-------
out : ndarray
    The drawn samples, arranged according to `shape`.  If the
    shape given is (m,n,...), then the shape of `out` is is
    (m,n,...,N).

    In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
    value drawn from the distribution.

Warnings
--------
Certain warnings apply.

See Also
--------
`some`_, `other`_, `funcs`_

`otherfunc`_
    relationship

Notes
-----
Instead of specifying the full covariance matrix, popular
approximations include:

  - Spherical covariance (`cov` is a multiple of the identity matrix)
  - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> x,y = multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be symmetric and non-negative
definite.

References
----------
.. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
       Processes," 3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
       2nd ed., Wiley, 2001.

Examples
--------
>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = multivariate_normal(mean,cov,(3,3))
>>> print x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list( (x[0,0,:] - mean) < 0.6 )
[True, True]

.. index:: random
   :refguide: random;distributions, random;gauss""")


def test_sphinx_str():
    sphinx_doc = SphinxDocString(doc_txt)
    non_blank_line_by_line_compare(str(sphinx_doc),
"""
.. index:: random
   single: random;distributions, random;gauss

Draw values from a multivariate normal distribution with specified
mean and covariance.

The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.

:Parameters:

    **mean** : (N,) ndarray

        Mean of the N-dimensional distribution.

        .. math::

           (1+2+3)/3

    **cov** : (N,N) ndarray

        Covariance matrix of the distribution.

    **shape** : tuple of ints

        Given a shape of, for example, (m,n,k), m*n*k samples are
        generated, and packed in an m-by-n-by-k arrangement.  Because
        each sample is N-dimensional, the output shape is (m,n,k,N).

:Returns:

    **out** : ndarray

        The drawn samples, arranged according to `shape`.  If the
        shape given is (m,n,...), then the shape of `out` is is
        (m,n,...,N).
        
        In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
        value drawn from the distribution.

.. warning::

    Certain warnings apply.

.. seealso::
    
    :obj:`some`, :obj:`other`, :obj:`funcs`
    
    :obj:`otherfunc`
        relationship
    
.. rubric:: Notes

Instead of specifying the full covariance matrix, popular
approximations include:

  - Spherical covariance (`cov` is a multiple of the identity matrix)
  - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> x,y = multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be symmetric and non-negative
definite.

.. rubric:: References

.. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
       Processes," 3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
       2nd ed., Wiley, 2001.

.. only:: latex

   [1]_, [2]_

.. rubric:: Examples

>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = multivariate_normal(mean,cov,(3,3))
>>> print x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list( (x[0,0,:] - mean) < 0.6 )
[True, True]
""")

       
doc2 = NumpyDocString("""
    Returns array of indices of the maximum values of along the given axis.

    Parameters
    ----------
    a : {array_like}
        Array to look in.
    axis : {None, integer}
        If None, the index is into the flattened array, otherwise along
        the specified axis""")

def test_parameters_without_extended_description():
    assert_equal(len(doc2['Parameters']), 2)

doc3 = NumpyDocString("""
    my_signature(*params, **kwds)

    Return this and that.
    """)

def test_escape_stars():
    signature = str(doc3).split('\n')[0]
    assert_equal(signature, 'my_signature(\*params, \*\*kwds)')

doc4 = NumpyDocString(
    """a.conj()

    Return an array with all complex-valued elements conjugated.""")

def test_empty_extended_summary():
    assert_equal(doc4['Extended Summary'], [])

doc5 = NumpyDocString(
    """
    a.something()

    Raises
    ------
    LinAlgException
        If array is singular.

    """)

def test_raises():
    assert_equal(len(doc5['Raises']), 1)
    name,_,desc = doc5['Raises'][0]
    assert_equal(name,'LinAlgException')
    assert_equal(desc,['If array is singular.'])

def test_see_also():
    doc6 = NumpyDocString(
    """
    z(x,theta)

    See Also
    --------
    func_a, func_b, func_c
    func_d : some equivalent func
    foo.func_e : some other func over
             multiple lines
    func_f, func_g, :meth:`func_h`, func_j,
    func_k
    :obj:`baz.obj_q`
    :class:`class_j`: fubar
        foobar
    """)

    assert len(doc6['See Also']) == 12
    for func, desc, role in doc6['See Also']:
        if func in ('func_a', 'func_b', 'func_c', 'func_f',
                    'func_g', 'func_h', 'func_j', 'func_k', 'baz.obj_q'):
            assert(not desc)
        else:
            assert(desc)

        if func == 'func_h':
            assert role == 'meth'
        elif func == 'baz.obj_q':
            assert role == 'obj'
        elif func == 'class_j':
            assert role == 'class'
        else:
            assert role is None

        if func == 'func_d':
            assert desc == ['some equivalent func']
        elif func == 'foo.func_e':
            assert desc == ['some other func over', 'multiple lines']
        elif func == 'class_j':
            assert desc == ['fubar', 'foobar']

def test_see_also_print():
    class Dummy(object):
        """
        See Also
        --------
        func_a, func_b
        func_c : some relationship
                 goes here
        func_d
        """
        pass

    obj = Dummy()
    s = str(FunctionDoc(obj, role='func'))
    assert(':func:`func_a`, :func:`func_b`' in s)
    assert('    some relationship' in s)
    assert(':func:`func_d`' in s)

doc7 = NumpyDocString("""

        Doc starts on second line.

        """)

def test_empty_first_line():
    assert doc7['Summary'][0].startswith('Doc starts')


def test_no_summary():
    str(SphinxDocString("""
    Parameters
    ----------"""))


def test_unicode():
    doc = SphinxDocString("""
    

    

    Parameters
    ----------
     : 
        

    Returns
    -------
     : 
        

    """)
    assert doc['Summary'][0] == u''.encode('utf-8')

def test_plot_examples():
    cfg = dict(use_plots=True)

    doc = SphinxDocString("""
    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> plt.plot([1,2,3],[4,5,6])
    >>> plt.show()
    """, config=cfg)
    assert 'plot::' in str(doc), str(doc)

    doc = SphinxDocString("""
    Examples
    --------
    .. plot::
    
       import matplotlib.pyplot as plt
       plt.plot([1,2,3],[4,5,6])
       plt.show()
    """, config=cfg)
    assert str(doc).count('plot::') == 1, str(doc)

def test_class_members():

    class Dummy(object):
        """
        Dummy class.

        """
        def spam(self, a, b):
            """Spam\n\nSpam spam."""
            pass
        def ham(self, c, d):
            """Cheese\n\nNo cheese."""
            pass

    for cls in (ClassDoc, SphinxClassDoc):
        doc = cls(Dummy, config=dict(show_class_members=False))
        assert 'Methods' not in str(doc), (cls, str(doc))
        assert 'spam' not in str(doc), (cls, str(doc))
        assert 'ham' not in str(doc), (cls, str(doc))

        doc = cls(Dummy, config=dict(show_class_members=True))
        assert 'Methods' in str(doc), (cls, str(doc))
        assert 'spam' in str(doc), (cls, str(doc))
        assert 'ham' in str(doc), (cls, str(doc))

        if cls is SphinxClassDoc:
            assert '.. autosummary::' in str(doc), str(doc)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.