replaygain_old.py :  » Media-Sound-Audio » Python-Audio-Tools » audiotools-2.14 » audiotools » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Media Sound Audio » Python Audio Tools 
Python Audio Tools » audiotools 2.14 » audiotools » replaygain_old.py
#!/usr/bin/python

#Audio Tools, a module and set of tools for manipulating audio data
#Copyright (C) 2007-2010  Brian Langenberger

#This program is free software; you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation; either version 2 of the License, or
#(at your option) any later version.

#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#GNU General Public License for more details.

#You should have received a copy of the GNU General Public License
#along with this program; if not, write to the Free Software
#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA


#This is a module for ReplayGain calculation of a given PCM stream.
#It is included as a reference implementation and not as a substitute
#for external ReplayGain calculators.

#The first problem with it is that the results are not identical
#to those of external calculators, by about a 100th of a dB or so.
#This is probably because the C-based implementations use floats
#while Python uses doubles.  Thus the difference in rounding errors.

#The second problem with it is it's very, very slow.
#Python is ill-suited to these kinds of rolling loop calculations
#involving thousands of samples per second, so the Python-based
#approach is several times slower than real-time.


import audiotools
import audiotools.pcmstream
from itertools import izip

AYule = ((1.0, -3.8466461711806699, 7.81501653005538, -11.341703551320419, 13.055042193275449, -12.28759895145294, 9.4829380631978992, -5.8725786177599897, 2.7546586187461299, -0.86984376593551005, 0.13919314567432001),
         (1.0, -3.4784594855007098, 6.3631777756614802, -8.5475152747187408, 9.4769360780128, -8.8149868137015499, 6.8540154093699801, -4.3947099607955904, 2.1961168489077401, -0.75104302451432003, 0.13149317958807999),
         (1.0, -2.3789883497308399, 2.84868151156327, -2.6457717022982501, 2.2369765745171302, -1.67148153367602, 1.0059595480854699, -0.45953458054982999, 0.16378164858596, -0.050320777171309998, 0.023478974070199998),
         (1.0, -1.6127316513724701, 1.0797749225997, -0.2565625775407, -0.1627671912044, -0.22638893773905999, 0.39120800788283999, -0.22138138954924999, 0.045002353873520001, 0.020058518065010002, 0.0030243909574099999),
         (1.0, -1.4985897936779899, 0.87350271418187997, 0.12205022308084, -0.80774944671437998, 0.47854794562325997, -0.12453458140019, -0.040675101970140001, 0.083337552841070001, -0.042373480257460003, 0.029772073199250002),
         (1.0, -0.62820619233671005, 0.29661783706366002, -0.37256372942400001, 0.0021376785712399998, -0.42029820170917997, 0.22199650564824, 0.0061342435068200002, 0.06747620744683, 0.057848203758010003, 0.032227540721730001),
         (1.0, -1.0480033512634901, 0.29156311971248999, -0.26806001042946997, 0.0081999964585799997, 0.45054734505007998, -0.33032403314005998, 0.067393683331100004, -0.047842542290329998, 0.016399078361890002, 0.018073643235729998),
         (1.0, -0.51035327095184002, -0.31863563325244998, -0.20256413484477001, 0.14728154134329999, 0.38952639978998999, -0.23313271880868, -0.052460190244630001, -0.025059617240530001, 0.02442357316099, 0.01818801111503),
         (1.0, -0.25049871956019998, -0.43193942311113998, -0.034246810176749999, -0.046783287842420002, 0.26408300200954998, 0.15113130533215999, -0.17556493366449, -0.18823009262115001, 0.054777204286740003, 0.047044096881200002)
         )

BYule = ((0.038575994352000001, -0.021603671841850001, -0.0012339531685100001, -9.2916779589999993e-05, -0.016552603416190002, 0.02161526843274, -0.02074045215285, 0.0059429806512499997, 0.0030642802319099998, 0.00012025322027, 0.0028846368391600001),
         (0.054186564064300002, -0.029110078089480001, -0.0084870937985100006, -0.0085116564546900003, -0.0083499090493599996, 0.022452932533390001, -0.025963385129149998, 0.016248649629749999, -0.0024087905158400001, 0.0067461368224699999, -0.00187763777362),
         (0.15457299681924, -0.093310490563149995, -0.062478801536530001, 0.021635418887979999, -0.05588393329856, 0.047814766749210001, 0.0022231259774300001, 0.031740925400489998, -0.013905894218979999, 0.00651420667831, -0.0088136273383899993),
         (0.30296907319326999, -0.22613988682123001, -0.085873237307719993, 0.032829301726640003, -0.0091570293343400007, -0.02364141202522, -0.0058445603991300003, 0.062761013217490003, -8.2808674800000004e-06, 0.0020586188556400002, -0.029501349832869998),
         (0.33642304856131999, -0.25572241425570003, -0.11828570177555001, 0.11921148675203, -0.078344896094790006, -0.0046997791438, -0.0058950022444000001, 0.057242281403510002, 0.0083204398077299999, -0.016353813845399998, -0.017601765681500001),
         (0.44915256608449999, -0.14351757464546999, -0.22784394429749, -0.01419140100551, 0.040782627971389998, -0.12398163381747999, 0.04097565135648, 0.10478503600251, -0.01863887810927, -0.031934284389149997, 0.0054190774870700002),
         (0.56619470757640999, -0.75464456939302005, 0.16242137742230001, 0.16744243493672001, -0.18901604199609001, 0.30931782841830002, -0.27562961986223999, 0.0064731067724599998, 0.086475037803509999, -0.037889845548399997, -0.0058821544342100001),
         (0.58100494960552995, -0.53174909058578002, -0.14289799034253001, 0.17520704835522, 0.02377945217615, 0.15558449135572999, -0.25344790059353001, 0.016284624063329999, 0.069204677639589998, -0.03721611395801, -0.0074961879717200001),
         (0.53648789255105001, -0.42163034350695999, -0.0027595361192900001, 0.042678422194150002, -0.10214864179676, 0.14590772289387999, -0.024598648593450002, -0.11202315195388, -0.04060034127, 0.047886655481800003, -0.02217936801134)
         )

AButter = ((1.0, -1.9722337291952701, 0.97261396931305999),
           (1.0, -1.96977855582618, 0.97022847566350001),
           (1.0, -1.9583538097539801, 0.95920349965458995),
           (1.0, -1.9500275914987799, 0.95124613669835001),
           (1.0, -1.94561023566527, 0.94705070426117999),
           (1.0, -1.9278328697703599, 0.93034775234267997),
           (1.0, -1.91858953033784, 0.92177618768380998),
           (1.0, -1.9154210807478, 0.91885558323625005),
           (1.0, -1.88903307939452, 0.89487434461663995))

BButter = ((0.98621192462707996, -1.9724238492541599, 0.98621192462707996),
           (0.98500175787241995, -1.9700035157448399, 0.98500175787241995),
           (0.97938932735214002, -1.95877865470428, 0.97938932735214002),
           (0.97531843204928004, -1.9506368640985701, 0.97531843204928004),
           (0.97316523498161001, -1.94633046996323, 0.97316523498161001),
           (0.96454515552826003, -1.9290903110565201, 0.96454515552826003),
           (0.96009142950541004, -1.9201828590108201, 0.96009142950541004),
           (0.95856916599601005, -1.9171383319920301, 0.95856916599601005),
           (0.94597685600279002, -1.89195371200558, 0.94597685600279002))

SAMPLE_RATE_MAP = {48000:0,44100:1,32000:2,24000:3,22050:4,
                   16000:5,12000:6,11025:7,8000:8}


PINK_REF = 64.82

class Filter:
    def __init__(self, input_kernel, output_kernel):
        self.input_kernel = input_kernel
        self.output_kernel = output_kernel

        self.unfiltered_samples = [0.0] * len(self.input_kernel)
        self.filtered_samples = [0.0] * len(self.output_kernel)

    #takes a list of floating point samples
    #returns a list of filtered floating point samples
    def filter(self, samples):
        toreturn = []

        input_kernel = tuple(reversed(self.input_kernel))
        output_kernel = tuple(reversed(self.output_kernel[1:]))

        for s in samples:
            self.unfiltered_samples.append(s)

            filtered = sum([i * k for i,k in zip(
                self.unfiltered_samples[-len(input_kernel):],
                input_kernel)]) - \
                       sum([i * k for i,k in zip(
                self.filtered_samples[-len(output_kernel):],
                output_kernel)])

            self.filtered_samples.append(filtered)
            toreturn.append(filtered)


        #if we have more filtered and unfiltered samples than we'll need,
        #chop off the excess at the beginning
        if (len(self.unfiltered_samples) > (len(self.input_kernel))):
            self.unfiltered_samples = self.unfiltered_samples[-len(self.input_kernel):]

        if (len(self.filtered_samples) > (len(self.output_kernel))):
            self.filtered_samples = self.filtered_samples[-len(self.output_kernel):]

        return toreturn


MAX_ORDER = 10

class EqualLoudnessFilter(audiotools.PCMReader):
    def __init__(self, pcmreader):
        if (pcmreader.channels != 2):
            raise ValueError("channels must equal 2")
        if (pcmreader.sample_rate not in SAMPLE_RATE_MAP.keys()):
            raise ValueError("unsupported sample rate")

        self.stream = audiotools.pcmstream.PCMStreamReader(
            pcmreader,
            pcmreader.bits_per_sample / 8,
            False,True)

        audiotools.PCMReader.__init__(
            self,
            self.stream,
            pcmreader.sample_rate,
            2,
            pcmreader.bits_per_sample)

        self.leftover_samples = []

        self.yule_filter_l = Filter(
            BYule[SAMPLE_RATE_MAP[self.sample_rate]],
            AYule[SAMPLE_RATE_MAP[self.sample_rate]])

        self.yule_filter_r = Filter(
            BYule[SAMPLE_RATE_MAP[self.sample_rate]],
            AYule[SAMPLE_RATE_MAP[self.sample_rate]])

        self.butter_filter_l = Filter(
            BButter[SAMPLE_RATE_MAP[self.sample_rate]],
            AButter[SAMPLE_RATE_MAP[self.sample_rate]])

        self.butter_filter_r = Filter(
            BButter[SAMPLE_RATE_MAP[self.sample_rate]],
            AButter[SAMPLE_RATE_MAP[self.sample_rate]])

    def read(self, bytes):
        #read in a bunch of floating point samples
        (frame_list,self.leftover_samples) = audiotools.FrameList.from_samples(
            self.leftover_samples + self.stream.read(bytes),
            self.channels)

        #convert them to a pair of floating-point channel lists
        l_channel = frame_list.channel(0)
        r_channel = frame_list.channel(1)

        #run our channel lists through the Yule and Butter filters
        l_channel = self.butter_filter_l.filter(
            self.yule_filter_l.filter(l_channel))

        r_channel = self.butter_filter_r.filter(
            self.yule_filter_r.filter(r_channel))

        #convert our channel lists back to integer samples
        multiplier = 1 << (self.bits_per_sample - 1)

        return audiotools.pcmstream.pcm_to_string(
            audiotools.FrameList.from_channels(
              ([int(round(s * multiplier)) for s in l_channel],
               [int(round(s * multiplier)) for s in r_channel])),
            self.bits_per_sample / 8,
            False)


#this takes a PCMReader-compatible object
#it yields FrameLists, each 50ms long (1/20th of a second)
#how many PCM frames that is varies depending on the sample rate
def replay_gain_blocks(pcmreader):
    unhandled_samples = []        #partial PCM frames
    frame_pool = audiotools.FrameList([],pcmreader.channels)

    reader = audiotools.pcmstream.PCMStreamReader(pcmreader,
                                                  pcmreader.bits_per_sample / 8,
                                                  False,False)

    (framelist,unhandled_samples) = audiotools.FrameList.from_samples(
        unhandled_samples + reader.read(audiotools.BUFFER_SIZE),
        pcmreader.channels)

    while ((len(framelist) > 0) or (len(unhandled_samples) > 0)):
        frame_pool.extend(framelist)

        while (frame_pool.total_frames() >= (pcmreader.sample_rate / 20)):
            yield audiotools.FrameList(
                frame_pool[0:
                           ((pcmreader.sample_rate / 20) * pcmreader.channels)],
                pcmreader.channels)
            frame_pool = audiotools.FrameList(
                frame_pool[((pcmreader.sample_rate / 20) * pcmreader.channels):],
                pcmreader.channels)

        (framelist,unhandled_samples) = audiotools.FrameList.from_samples(
            unhandled_samples + reader.read(audiotools.BUFFER_SIZE),
            pcmreader.channels)

    reader.close()
    #this drops the last block that's not 50ms long
    #that's probably the right thing to do


#takes a PCMReader-compatible object with 2 channels and a
#supported sample rate
#returns the stream's ReplayGain value in dB
def calculate_replay_gain(pcmstream):
    import math

    def __mean__(l):
        return sum(l) / len(l)

    pcmstream = EqualLoudnessFilter(pcmstream)

    db_blocks = []

    for block in replay_gain_blocks(pcmstream):
        left = __mean__([s ** 2 for s in block.channel(0)])
        right = __mean__([s ** 2 for s in block.channel(1)])
        db_blocks.append((left + right) / 2)

    db_blocks = [10 * math.log10(b + 10 ** -10) for b in db_blocks]
    db_blocks.sort()
    replay_gain = db_blocks[int(round(len(db_blocks) * 0.95))]

    return PINK_REF - replay_gain


if (__name__ == '__main__'):
    pass

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.