kraken_continuation.py :  » Mobile » Pysces » pysces-0.7.2-(test) » pysces » kraken » controllers » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Mobile » Pysces 
Pysces » pysces 0.7.2 test  » pysces » kraken » controllers » kraken_continuation.py
import os

os.chdir('c:/mypysces/kraken')
##  os.chdir('/home/bgoli/mypysces/kraken')
from pysces.kraken.Kraken import *
## from Kraken import *

# build controller
blob = getBasicController()
Model_File = '2006_isola2.psc'
Model_Dir = 'c:\\mypysces\\pscmodels\\isola06'
##  Model_Dir = '/home/bgoli/mypysces/pscmodels/isola06'
blob.startModelServer(Model_File, Model_Dir)
blob.startTentacleMonitor(interval=60)

# initialise tentacles
print 'Server list: %s\n' % blob.available_server_list
server_list = blob.available_server_list

I_list = ['P_INIT,' + blob.model_server.model_file_name, 'P_LOAD',\
    'P_SET_FLOAT,mode_state_init,3', 'P_SET_FLOAT,nleq2_nitmax,20',\
    'P_SET_FLOAT,mode_state_init3_factor,0.5',\
    'P_SET_FLOAT,V2,200.0', 'P_SET_FLOAT,V3,200.0']


# continuation
yrange = 100
xpoints = 512
delta_list = scipy.logspace(scipy.log10(0.2),scipy.log10(1.0), yrange)
print delta_list
delta_gen = buildCycler(delta_list)

def deltaCommand():
    delta = 'P_SET_FLOAT,A05,%s' % delta_gen.next()
    return [delta]

job_list = []
for d in delta_list:
    ##  job_list.append('P_CONTINUATION,P,0.001,4.0e3,%s,%s' % (xpoints,d))
    job_list.append('P_CONTINUATION,P,0.01,3.0e4,%s,%s' % (xpoints,d))


original_job_list = tuple(job_list)

TIME_START = time.time()
DaResults = []
JobsWaiting = True
getServer = buildCycler(blob.available_server_list)
while JobsWaiting:
    deferred_jobs = []
    job_servers = []
    for job in range(len(job_list)):
        if job < len(server_list):
            server = getServer.next()
            job_servers.append(server)
            blob.sendCmdListToOne(I_list, server)
            blob.sendCmdListToOne(deltaCommand(), server)
            blob.sendJobToOne(job_list[job], server)
        else:
            deferred_jobs.append(job_list[job])
            print 'Job %s of %s deferred' % (job+1, len(job_list))
    blob.runAllJobs()
    ##  blob.sendCmdListToAll(['P_STORE_DATA'])
    for server in job_servers:
        blob.getDataFromOneJob(server)
        arr = blob.tentacle_response[server]
        DaResults.append(arr)
        print type(arr)
    blob.clearProcessMap()
    if len(deferred_jobs) > 0:
        print '\nDeferred:', deferred_jobs
        job_list = deferred_jobs
    else:
        JobsWaiting = False
    cPickle.dump(DaResults, file('cont_result_list.bin','wb'), 2)


print '\nNumber of results = %s' % len(DaResults)
total_states = 0
for x in range(len(DaResults)):
    try:
        print '\tResult %s has %s rows and %s columns' % (x+1, DaResults[x].shape[0], DaResults[x].shape[1])
        total_states += DaResults[x].shape[0]
    except:
        print type(DaResults[x])
        print '\tResult %s %s: %s' % (x+1, type(DaResults[x]), DaResults[x])
        print original_job_list[x]

TIME_END = time.time()

print 'Total time taken to complete %s state scan %s minutes' % (total_states, (TIME_END-TIME_START)/60.0)

FinalArray = concatenateArrays(DaResults)
cPickle.dump(FinalArray, file('cont_result_array.bin','wb'), 2)


if __name__ == '__main__':
    import scipy.io

    # get rid of negative values in axes and fluxes
    FinalArrayClean = []
    FinalVTK = []
    for r in range(FinalArray.shape[0]):
        if FinalArray[r,0] <= 0.0 or FinalArray[r,1] <= 0.0 or FinalArray[r,4] <= 0.0:
            FinalArray[r,:] == 0.0
        else:
            FinalArrayClean.append(FinalArray[r,:])

    FinalArrayClean = numpy.array(FinalArrayClean)

    # write out an xyz gplt file
    coords = numpy.transpose(numpy.array((FinalArrayClean[:,0],FinalArrayClean[:,1],FinalArrayClean[:,4])))
    scipy.io.write_array('cont_result_gplt.dat', coords, separator=' ')

    # write out a f%$^&* VTK file

    """
    Orgiginal version http://mayavi.sourceforge.net/mwiki/PointClouds
    Hacked by brett 20070221

    Converts xyz point cloud into something renderable
    Original code by Rod Holland & Prabhu Ramachandran
    Handy to visualise raw ascii column file
    """

    ##  i=0
    ##  x=[]
    ##  y=[]
    ##  z=[]

    ##  # add log(data)
    ##  for r in range(coords.shape[0]):
        ##  x.append(scipy.log10(coords[r,0]))
        ##  y.append(scipy.log10(coords[r,1]))
        ##  z.append(scipy.log10(coords[r,2]))

    n=coords.shape[0]
    print "n:",n
    # write data to vtk polydata file
    # write header
    out = file('cont_result_ug.vtk', 'w')
    h1 = "# vtk DataFile Version 2.0\n"
    h1 += "loop\n"
    h1 += "ASCII\n"
    h1 += "DATASET UNSTRUCTURED_GRID\n"
    h1 += "POINTS " + str(n) + " double\n"
    out.write(h1)
    # write xyz data
    for r in range(n):
        #s = '%15.2f %15.2f %15.2f' % (x[i], y[i], z[i])
        out.write(str(scipy.log10(coords[r,0]))+" "+str(scipy.log10(coords[r,1]))+" "+str(scipy.log10(coords[r,2]))+'\n')
        ##  out.write(str(scipy.log10(coords[r,2]))+" "+str(scipy.log10(coords[r,1]))+" "+str(scipy.log10(coords[r,0]))+'\n')

    # write cell data
    out.write("CELLS "+ str(n)+ " "+ str(2*n)+'\n')
    for r in range(n):
            #s = '1 %d \n' % (i)
            out.write("1 "+str(r)+"\n")

    # write cell types
    out.write("CELL_TYPES " + str(n)+'\n')
    for r in range(n):
        out.write("1 \n")

    # write z scalar values
    h2 = '\n' + """POINT_DATA """ + str(n) + "\n"
    h3 = "SCALARS Z_Value double 1\n"
    h3 += "LOOKUP_TABLE default\n"
    out.write(h2+ h3)

    for r in range(n):
        sc=(scipy.log10(coords[r,2]))
        out.write(str(sc)+ "\n")

    out.write('\n')
    out.close()


    #archived shit
    """
    ##  undup = {}
    ##  rounding = 5
    ##  for r in range(coords.shape[0]):
        ##  undup.setdefault(round(coords[r,2], rounding), [coords[r,0], coords[r,1]])
    ##  rF = file('cont_result_array_gplt_reduced.dat','w')
    ##  print 'Total states: %s\nReduced states: %s ' % (total_states, len(undup.keys()))
    ##  for key in undup:
        ##  rF.write('%s, %s, %s\n' % (undup[key][0], undup[key][1], key))
    ##  rF.flush()
    ##  rF.close()

    """
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.