import os, tempfile
from nose import SkipTest
from nose.tools import assert_raises,assert_true,assert_false
import networkx as nx
from networkx.generators.classic import barbell_graph,cycle_graph,path_graph
class TestConvertNumpy(object):
@classmethod
def setupClass(cls):
global np, sp, sparse
try:
import numpy as np
import scipy as sp
import scipy.sparse as sparse
except ImportError:
raise SkipTest('SciPy sparse library not available.')
def __init__(self):
self.G1 = barbell_graph(10, 3)
self.G2 = cycle_graph(10, create_using=nx.DiGraph())
self.G3 = self.create_weighted(nx.Graph())
self.G4 = self.create_weighted(nx.DiGraph())
def create_weighted(self, G):
g = cycle_graph(4)
e = g.edges()
source = [u for u,v in e]
dest = [v for u,v in e]
weight = [s+10 for s in source]
ex = zip(source, dest, weight)
G.add_weighted_edges_from(ex)
return G
def assert_equal(self, G1, G2):
assert_true( sorted(G1.nodes())==sorted(G2.nodes()) )
assert_true( sorted(G1.edges())==sorted(G2.edges()) )
def identity_conversion(self, G, A, create_using):
GG = nx.from_scipy_sparse_matrix(A, create_using=create_using)
self.assert_equal(G, GG)
GW = nx.from_whatever(A, create_using=create_using)
self.assert_equal(G, GW)
GI = create_using.__class__(A)
self.assert_equal(G, GI)
ACSR = A.tocsr()
GI = create_using.__class__(ACSR)
self.assert_equal(G, GI)
ACOO = A.tocoo()
GI = create_using.__class__(ACOO)
self.assert_equal(G, GI)
ACSC = A.tocsc()
GI = create_using.__class__(ACSC)
self.assert_equal(G, GI)
AD = A.todense()
GI = create_using.__class__(AD)
self.assert_equal(G, GI)
AA = A.toarray()
GI = create_using.__class__(AA)
self.assert_equal(G, GI)
def test_shape(self):
"Conversion from non-square sparse array."
A = sp.sparse.lil_matrix([[1,2,3],[4,5,6]])
assert_raises(nx.NetworkXError, nx.from_scipy_sparse_matrix, A)
def test_identity_graph_matrix(self):
"Conversion from graph to sparse matrix to graph."
A = nx.to_scipy_sparse_matrix(self.G1)
self.identity_conversion(self.G1, A, nx.Graph())
def test_identity_digraph_matrix(self):
"Conversion from digraph to sparse matrix to digraph."
A = nx.to_scipy_sparse_matrix(self.G2)
self.identity_conversion(self.G2, A, nx.DiGraph())
def test_identity_weighted_graph_matrix(self):
"""Conversion from weighted graph to sparse matrix to weighted graph."""
A = nx.to_scipy_sparse_matrix(self.G3)
self.identity_conversion(self.G3, A, nx.Graph())
def test_identity_weighted_digraph_matrix(self):
"""Conversion from weighted digraph to sparse matrix to weighted digraph."""
A = nx.to_scipy_sparse_matrix(self.G4)
self.identity_conversion(self.G4, A, nx.DiGraph())
def test_nodelist(self):
"""Conversion from graph to sparse matrix to graph with nodelist."""
P4 = path_graph(4)
P3 = path_graph(3)
nodelist = P3.nodes()
A = nx.to_scipy_sparse_matrix(P4, nodelist=nodelist)
GA = nx.Graph(A)
self.assert_equal(GA, P3)
# Make nodelist ambiguous by containing duplicates.
nodelist += [nodelist[0]]
assert_raises(nx.NetworkXError, nx.to_numpy_matrix, P3, nodelist=nodelist)
|