# -*- coding: ISO-8859-1 -*-
#
#
# Copyright (C) 2002-2006 Jrg Lehmann <joergl@users.sourceforge.net>
# Copyright (C) 2003-2006 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2002-2006 Andr Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
from __future__ import nested_scopes
import math
try:
from math import radians,degrees
except ImportError:
# fallback implementation for Python 2.1
def radians(x): return x*math.pi/180
def degrees(x): return x*180/math.pi
import mathutils, path, trafo, unit
import bbox as bboxmodule
try:
sum([])
except NameError:
# fallback implementation for Python 2.2 and below
def sum(list):
return reduce(lambda x, y: x+y, list, 0)
try:
enumerate([])
except NameError:
# fallback implementation for Python 2.2 and below
def enumerate(list):
return zip(xrange(len(list)), list)
# use new style classes when possible
__metaclass__ = type
class _marker: pass
################################################################################
# specific exception for normpath-related problems
class NormpathException(Exception): pass
# invalid result marker
class _invalid:
"""invalid result marker class
The following norm(sub)path(item) methods:
- trafo
- rotation
- tangent_pt
- tangent
- curvature_pt
- curvradius_pt
return list of result values, which might contain the invalid instance
defined below to signal points, where the result is undefined due to
properties of the norm(sub)path(item). Accessing invalid leads to an
NormpathException, but you can test the result values by "is invalid".
"""
def invalid1(self):
raise NormpathException("invalid result (the requested value is undefined due to path properties)")
__str__ = __repr__ = __neg__ = invalid1
def invalid2(self, other):
self.invalid1()
__cmp__ = __add__ = __iadd__ = __sub__ = __isub__ = __mul__ = __imul__ = __div__ = __truediv__ = __idiv__ = invalid2
invalid = _invalid()
################################################################################
# global epsilon (default precision of normsubpaths)
_epsilon = 1e-5
# minimal relative speed (abort condition for tangent information)
_minrelspeed = 1e-5
def set(epsilon=None, minrelspeed=None):
global _epsilon
global _minrelspeed
if epsilon is not None:
_epsilon = epsilon
if minrelspeed is not None:
_minrelspeed = minrelspeed
################################################################################
# normsubpathitems
################################################################################
class normsubpathitem:
"""element of a normalized sub path
Various operations on normsubpathitems might be subject of
approximitions. Those methods get the finite precision epsilon,
which is the accuracy needed expressed as a length in pts.
normsubpathitems should never be modified inplace, since references
might be shared between several normsubpaths.
"""
def arclen_pt(self, epsilon):
"""return arc length in pts"""
pass
def _arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params and the total length arc length in pts"""
pass
def arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params"""
pass
def at_pt(self, params):
"""return coordinates at params in pts"""
pass
def atbegin_pt(self):
"""return coordinates of first point in pts"""
pass
def atend_pt(self):
"""return coordinates of last point in pts"""
pass
def bbox(self):
"""return bounding box of normsubpathitem"""
pass
def cbox(self):
"""return control box of normsubpathitem
The control box also fully encloses the normsubpathitem but in the case of a Bezier
curve it is not the minimal box doing so. On the other hand, it is much faster
to calculate.
"""
pass
def curvature_pt(self, params):
"""return the curvature at params in 1/pts
The result contains the invalid instance at positions, where the
curvature is undefined."""
pass
def curveradius_pt(self, params):
"""return the curvature radius at params in pts
The curvature radius is the inverse of the curvature. Where the
curvature is undefined, the invalid instance is returned. Note that
this radius can be negative or positive, depending on the sign of the
curvature."""
pass
def intersect(self, other, epsilon):
"""intersect self with other normsubpathitem"""
pass
def modifiedbegin_pt(self, x_pt, y_pt):
"""return a normsubpathitem with a modified beginning point"""
pass
def modifiedend_pt(self, x_pt, y_pt):
"""return a normsubpathitem with a modified end point"""
pass
def _paramtoarclen_pt(self, param, epsilon):
"""return a tuple of arc lengths and the total arc length in pts"""
pass
def pathitem(self):
"""return pathitem corresponding to normsubpathitem"""
def reversed(self):
"""return reversed normsubpathitem"""
pass
def rotation(self, params):
"""return rotation trafos (i.e. trafos without translations) at params"""
pass
def segments(self, params):
"""return segments of the normsubpathitem
The returned list of normsubpathitems for the segments between
the params. params needs to contain at least two values.
"""
pass
def trafo(self, params):
"""return transformations at params"""
def transformed(self, trafo):
"""return transformed normsubpathitem according to trafo"""
pass
def outputPS(self, file, writer):
"""write PS code corresponding to normsubpathitem to file"""
pass
def outputPDF(self, file, writer):
"""write PDF code corresponding to normsubpathitem to file"""
pass
class normline_pt(normsubpathitem):
"""Straight line from (x0_pt, y0_pt) to (x1_pt, y1_pt) (coordinates in pts)"""
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt"
def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt):
self.x0_pt = x0_pt
self.y0_pt = y0_pt
self.x1_pt = x1_pt
self.y1_pt = y1_pt
def __str__(self):
return "normline_pt(%g, %g, %g, %g)" % (self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt)
def _arclentoparam_pt(self, lengths_pt, epsilon):
# do self.arclen_pt inplace for performance reasons
l_pt = math.hypot(self.x0_pt-self.x1_pt, self.y0_pt-self.y1_pt)
return [length_pt/l_pt for length_pt in lengths_pt], l_pt
def arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params"""
return self._arclentoparam_pt(lengths_pt, epsilon)[0]
def arclen_pt(self, epsilon):
return math.hypot(self.x0_pt-self.x1_pt, self.y0_pt-self.y1_pt)
def at_pt(self, params):
return [(self.x0_pt+(self.x1_pt-self.x0_pt)*t, self.y0_pt+(self.y1_pt-self.y0_pt)*t)
for t in params]
def atbegin_pt(self):
return self.x0_pt, self.y0_pt
def atend_pt(self):
return self.x1_pt, self.y1_pt
def bbox(self):
return bboxmodule.bbox_pt(min(self.x0_pt, self.x1_pt), min(self.y0_pt, self.y1_pt),
max(self.x0_pt, self.x1_pt), max(self.y0_pt, self.y1_pt))
cbox = bbox
def curvature_pt(self, params):
return [0] * len(params)
def curveradius_pt(self, params):
return [invalid] * len(params)
def intersect(self, other, epsilon):
if isinstance(other, normline_pt):
a_deltax_pt = self.x1_pt - self.x0_pt
a_deltay_pt = self.y1_pt - self.y0_pt
b_deltax_pt = other.x1_pt - other.x0_pt
b_deltay_pt = other.y1_pt - other.y0_pt
try:
det = 1.0 / (b_deltax_pt * a_deltay_pt - b_deltay_pt * a_deltax_pt)
except ArithmeticError:
return []
ba_deltax0_pt = other.x0_pt - self.x0_pt
ba_deltay0_pt = other.y0_pt - self.y0_pt
a_t = (b_deltax_pt * ba_deltay0_pt - b_deltay_pt * ba_deltax0_pt) * det
b_t = (a_deltax_pt * ba_deltay0_pt - a_deltay_pt * ba_deltax0_pt) * det
# check for intersections out of bound
# TODO: we might allow for a small out of bound errors.
if not (0<=a_t<=1 and 0<=b_t<=1):
return []
# return parameters of intersection
return [(a_t, b_t)]
else:
return [(s_t, o_t) for o_t, s_t in other.intersect(self, epsilon)]
def modifiedbegin_pt(self, x_pt, y_pt):
return normline_pt(x_pt, y_pt, self.x1_pt, self.y1_pt)
def modifiedend_pt(self, x_pt, y_pt):
return normline_pt(self.x0_pt, self.y0_pt, x_pt, y_pt)
def _paramtoarclen_pt(self, params, epsilon):
totalarclen_pt = self.arclen_pt(epsilon)
arclens_pt = [totalarclen_pt * param for param in params + [1]]
return arclens_pt[:-1], arclens_pt[-1]
def pathitem(self):
return path.lineto_pt(self.x1_pt, self.y1_pt)
def reversed(self):
return normline_pt(self.x1_pt, self.y1_pt, self.x0_pt, self.y0_pt)
def rotation(self, params):
return [trafo.rotate(degrees(math.atan2(self.y1_pt-self.y0_pt, self.x1_pt-self.x0_pt)))]*len(params)
def segments(self, params):
if len(params) < 2:
raise ValueError("at least two parameters needed in segments")
result = []
xl_pt = yl_pt = None
for t in params:
xr_pt = self.x0_pt + (self.x1_pt-self.x0_pt)*t
yr_pt = self.y0_pt + (self.y1_pt-self.y0_pt)*t
if xl_pt is not None:
result.append(normline_pt(xl_pt, yl_pt, xr_pt, yr_pt))
xl_pt = xr_pt
yl_pt = yr_pt
return result
def trafo(self, params):
rotate = trafo.rotate(degrees(math.atan2(self.y1_pt-self.y0_pt, self.x1_pt-self.x0_pt)))
return [trafo.translate_pt(*at_pt) * rotate
for param, at_pt in zip(params, self.at_pt(params))]
def transformed(self, trafo):
return normline_pt(*(trafo.apply_pt(self.x0_pt, self.y0_pt) + trafo.apply_pt(self.x1_pt, self.y1_pt)))
def outputPS(self, file, writer):
file.write("%g %g lineto\n" % (self.x1_pt, self.y1_pt))
def outputPDF(self, file, writer):
file.write("%f %f l\n" % (self.x1_pt, self.y1_pt))
class normcurve_pt(normsubpathitem):
"""Bezier curve with control points x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt (coordinates in pts)"""
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt):
self.x0_pt = x0_pt
self.y0_pt = y0_pt
self.x1_pt = x1_pt
self.y1_pt = y1_pt
self.x2_pt = x2_pt
self.y2_pt = y2_pt
self.x3_pt = x3_pt
self.y3_pt = y3_pt
def __str__(self):
return "normcurve_pt(%g, %g, %g, %g, %g, %g, %g, %g)" % (self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt,
self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt)
def _midpointsplit(self, epsilon):
"""split curve into two parts
Helper method to reduce the complexity of a problem by turning
a normcurve_pt into several normline_pt segments. This method
returns normcurve_pt instances only, when they are not yet straight
enough to be replaceable by normcurve_pt instances. Thus a recursive
midpointsplitting will turn a curve into line segments with the
given precision epsilon.
"""
# first, we have to calculate the midpoints between adjacent
# control points
x01_pt = 0.5*(self.x0_pt + self.x1_pt)
y01_pt = 0.5*(self.y0_pt + self.y1_pt)
x12_pt = 0.5*(self.x1_pt + self.x2_pt)
y12_pt = 0.5*(self.y1_pt + self.y2_pt)
x23_pt = 0.5*(self.x2_pt + self.x3_pt)
y23_pt = 0.5*(self.y2_pt + self.y3_pt)
# In the next iterative step, we need the midpoints between 01 and 12
# and between 12 and 23
x01_12_pt = 0.5*(x01_pt + x12_pt)
y01_12_pt = 0.5*(y01_pt + y12_pt)
x12_23_pt = 0.5*(x12_pt + x23_pt)
y12_23_pt = 0.5*(y12_pt + y23_pt)
# Finally the midpoint is given by
xmidpoint_pt = 0.5*(x01_12_pt + x12_23_pt)
ymidpoint_pt = 0.5*(y01_12_pt + y12_23_pt)
# Before returning the normcurves we check whether we can
# replace them by normlines within an error of epsilon pts.
# The maximal error value is given by the modulus of the
# difference between the length of the control polygon
# (i.e. |P1-P0|+|P2-P1|+|P3-P2|), which consitutes an upper
# bound for the length, and the length of the straight line
# between start and end point of the normcurve (i.e. |P3-P1|),
# which represents a lower bound.
l0_pt = math.hypot(xmidpoint_pt - self.x0_pt, ymidpoint_pt - self.y0_pt)
l1_pt = math.hypot(x01_pt - self.x0_pt, y01_pt - self.y0_pt)
l2_pt = math.hypot(x01_12_pt - x01_pt, y01_12_pt - y01_pt)
l3_pt = math.hypot(xmidpoint_pt - x01_12_pt, ymidpoint_pt - y01_12_pt)
if l1_pt+l2_pt+l3_pt-l0_pt < epsilon:
a = _leftnormline_pt(self.x0_pt, self.y0_pt, xmidpoint_pt, ymidpoint_pt, l1_pt, l2_pt, l3_pt)
else:
a = _leftnormcurve_pt(self.x0_pt, self.y0_pt,
x01_pt, y01_pt,
x01_12_pt, y01_12_pt,
xmidpoint_pt, ymidpoint_pt)
l0_pt = math.hypot(self.x3_pt - xmidpoint_pt, self.y3_pt - ymidpoint_pt)
l1_pt = math.hypot(x12_23_pt - xmidpoint_pt, y12_23_pt - ymidpoint_pt)
l2_pt = math.hypot(x23_pt - x12_23_pt, y23_pt - y12_23_pt)
l3_pt = math.hypot(self.x3_pt - x23_pt, self.y3_pt - y23_pt)
if l1_pt+l2_pt+l3_pt-l0_pt < epsilon:
b = _rightnormline_pt(xmidpoint_pt, ymidpoint_pt, self.x3_pt, self.y3_pt, l1_pt, l2_pt, l3_pt)
else:
b = _rightnormcurve_pt(xmidpoint_pt, ymidpoint_pt,
x12_23_pt, y12_23_pt,
x23_pt, y23_pt,
self.x3_pt, self.y3_pt)
return a, b
def _arclentoparam_pt(self, lengths_pt, epsilon):
a, b = self._midpointsplit(epsilon)
params_a, arclen_a_pt = a._arclentoparam_pt(lengths_pt, epsilon)
params_b, arclen_b_pt = b._arclentoparam_pt([length_pt - arclen_a_pt for length_pt in lengths_pt], epsilon)
params = []
for param_a, param_b, length_pt in zip(params_a, params_b, lengths_pt):
if length_pt > arclen_a_pt:
params.append(b.subparamtoparam(param_b))
else:
params.append(a.subparamtoparam(param_a))
return params, arclen_a_pt + arclen_b_pt
def arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params"""
return self._arclentoparam_pt(lengths_pt, epsilon)[0]
def arclen_pt(self, epsilon):
a, b = self._midpointsplit(epsilon)
return a.arclen_pt(epsilon) + b.arclen_pt(epsilon)
def at_pt(self, params):
return [( (-self.x0_pt+3*self.x1_pt-3*self.x2_pt+self.x3_pt)*t*t*t +
(3*self.x0_pt-6*self.x1_pt+3*self.x2_pt )*t*t +
(-3*self.x0_pt+3*self.x1_pt )*t +
self.x0_pt,
(-self.y0_pt+3*self.y1_pt-3*self.y2_pt+self.y3_pt)*t*t*t +
(3*self.y0_pt-6*self.y1_pt+3*self.y2_pt )*t*t +
(-3*self.y0_pt+3*self.y1_pt )*t +
self.y0_pt )
for t in params]
def atbegin_pt(self):
return self.x0_pt, self.y0_pt
def atend_pt(self):
return self.x3_pt, self.y3_pt
def bbox(self):
xmin_pt, xmax_pt = path._bezierpolyrange(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt)
ymin_pt, ymax_pt = path._bezierpolyrange(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt)
return bboxmodule.bbox_pt(xmin_pt, ymin_pt, xmax_pt, ymax_pt)
def cbox(self):
return bboxmodule.bbox_pt(min(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt),
min(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt),
max(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt),
max(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt))
def curvature_pt(self, params):
result = []
# see notes in rotation
approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
for param in params:
xdot = ( 3 * (1-param)*(1-param) * (-self.x0_pt + self.x1_pt) +
6 * (1-param)*param * (-self.x1_pt + self.x2_pt) +
3 * param*param * (-self.x2_pt + self.x3_pt) )
ydot = ( 3 * (1-param)*(1-param) * (-self.y0_pt + self.y1_pt) +
6 * (1-param)*param * (-self.y1_pt + self.y2_pt) +
3 * param*param * (-self.y2_pt + self.y3_pt) )
xddot = ( 6 * (1-param) * (self.x0_pt - 2*self.x1_pt + self.x2_pt) +
6 * param * (self.x1_pt - 2*self.x2_pt + self.x3_pt) )
yddot = ( 6 * (1-param) * (self.y0_pt - 2*self.y1_pt + self.y2_pt) +
6 * param * (self.y1_pt - 2*self.y2_pt + self.y3_pt) )
hypot = math.hypot(xdot, ydot)
if hypot/approxarclen > _minrelspeed:
result.append((xdot*yddot - ydot*xddot) / hypot**3)
else:
result.append(invalid)
return result
def curveradius_pt(self, params):
result = []
# see notes in rotation
approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
for param in params:
xdot = ( 3 * (1-param)*(1-param) * (-self.x0_pt + self.x1_pt) +
6 * (1-param)*param * (-self.x1_pt + self.x2_pt) +
3 * param*param * (-self.x2_pt + self.x3_pt) )
ydot = ( 3 * (1-param)*(1-param) * (-self.y0_pt + self.y1_pt) +
6 * (1-param)*param * (-self.y1_pt + self.y2_pt) +
3 * param*param * (-self.y2_pt + self.y3_pt) )
xddot = ( 6 * (1-param) * (self.x0_pt - 2*self.x1_pt + self.x2_pt) +
6 * param * (self.x1_pt - 2*self.x2_pt + self.x3_pt) )
yddot = ( 6 * (1-param) * (self.y0_pt - 2*self.y1_pt + self.y2_pt) +
6 * param * (self.y1_pt - 2*self.y2_pt + self.y3_pt) )
hypot = math.hypot(xdot, ydot)
if hypot/approxarclen > _minrelspeed:
result.append(hypot**3 / (xdot*yddot - ydot*xddot))
else:
result.append(invalid)
return result
def intersect(self, other, epsilon):
# There can be no intersection point, when the control boxes are not
# overlapping. Note that we use the control box instead of the bounding
# box here, because the former can be calculated more efficiently for
# Bezier curves.
if not self.cbox().intersects(other.cbox()):
return []
a, b = self._midpointsplit(epsilon)
# To improve the performance in the general case we alternate the
# splitting process between the two normsubpathitems
return ( [(a.subparamtoparam(a_t), o_t) for o_t, a_t in other.intersect(a, epsilon)] +
[(b.subparamtoparam(b_t), o_t) for o_t, b_t in other.intersect(b, epsilon)] )
def modifiedbegin_pt(self, x_pt, y_pt):
return normcurve_pt(x_pt, y_pt,
self.x1_pt, self.y1_pt,
self.x2_pt, self.y2_pt,
self.x3_pt, self.y3_pt)
def modifiedend_pt(self, x_pt, y_pt):
return normcurve_pt(self.x0_pt, self.y0_pt,
self.x1_pt, self.y1_pt,
self.x2_pt, self.y2_pt,
x_pt, y_pt)
def _paramtoarclen_pt(self, params, epsilon):
arclens_pt = [segment.arclen_pt(epsilon) for segment in self.segments([0] + list(params) + [1])]
for i in range(1, len(arclens_pt)):
arclens_pt[i] += arclens_pt[i-1]
return arclens_pt[:-1], arclens_pt[-1]
def pathitem(self):
return path.curveto_pt(self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt)
def reversed(self):
return normcurve_pt(self.x3_pt, self.y3_pt, self.x2_pt, self.y2_pt, self.x1_pt, self.y1_pt, self.x0_pt, self.y0_pt)
def rotation(self, params):
result = []
# We need to take care of the case of tdx_pt and tdy_pt close to zero.
# We should not compare those values to epsilon (which is a length) directly.
# Furthermore we want this "speed" in general and it's abort condition in
# particular to be invariant on the actual size of the normcurve. Hence we
# first calculate a crude approximation for the arclen.
approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
for param in params:
tdx_pt = (3*( -self.x0_pt+3*self.x1_pt-3*self.x2_pt+self.x3_pt)*param*param +
2*( 3*self.x0_pt-6*self.x1_pt+3*self.x2_pt )*param +
(-3*self.x0_pt+3*self.x1_pt ))
tdy_pt = (3*( -self.y0_pt+3*self.y1_pt-3*self.y2_pt+self.y3_pt)*param*param +
2*( 3*self.y0_pt-6*self.y1_pt+3*self.y2_pt )*param +
(-3*self.y0_pt+3*self.y1_pt ))
# We scale the speed such the "relative speed" of a line is 1 independend of
# the length of the line. For curves we want this "relative speed" to be higher than
# _minrelspeed:
if math.hypot(tdx_pt, tdy_pt)/approxarclen > _minrelspeed:
result.append(trafo.rotate(degrees(math.atan2(tdy_pt, tdx_pt))))
else:
# Note that we can't use the rule of l'Hopital here, since it would
# not provide us with a sign for the tangent. Hence we wouldn't
# notice whether the sign changes (which is a typical case at cusps).
result.append(invalid)
return result
def segments(self, params):
if len(params) < 2:
raise ValueError("at least two parameters needed in segments")
# first, we calculate the coefficients corresponding to our
# original bezier curve. These represent a useful starting
# point for the following change of the polynomial parameter
a0x_pt = self.x0_pt
a0y_pt = self.y0_pt
a1x_pt = 3*(-self.x0_pt+self.x1_pt)
a1y_pt = 3*(-self.y0_pt+self.y1_pt)
a2x_pt = 3*(self.x0_pt-2*self.x1_pt+self.x2_pt)
a2y_pt = 3*(self.y0_pt-2*self.y1_pt+self.y2_pt)
a3x_pt = -self.x0_pt+3*(self.x1_pt-self.x2_pt)+self.x3_pt
a3y_pt = -self.y0_pt+3*(self.y1_pt-self.y2_pt)+self.y3_pt
result = []
for i in range(len(params)-1):
t1 = params[i]
dt = params[i+1]-t1
# [t1,t2] part
#
# the new coefficients of the [t1,t1+dt] part of the bezier curve
# are then given by expanding
# a0 + a1*(t1+dt*u) + a2*(t1+dt*u)**2 +
# a3*(t1+dt*u)**3 in u, yielding
#
# a0 + a1*t1 + a2*t1**2 + a3*t1**3 +
# ( a1 + 2*a2 + 3*a3*t1**2 )*dt * u +
# ( a2 + 3*a3*t1 )*dt**2 * u**2 +
# a3*dt**3 * u**3
#
# from this values we obtain the new control points by inversion
#
# TODO: we could do this more efficiently by reusing for
# (x0_pt, y0_pt) the control point (x3_pt, y3_pt) from the previous
# Bezier curve
x0_pt = a0x_pt + a1x_pt*t1 + a2x_pt*t1*t1 + a3x_pt*t1*t1*t1
y0_pt = a0y_pt + a1y_pt*t1 + a2y_pt*t1*t1 + a3y_pt*t1*t1*t1
x1_pt = (a1x_pt+2*a2x_pt*t1+3*a3x_pt*t1*t1)*dt/3.0 + x0_pt
y1_pt = (a1y_pt+2*a2y_pt*t1+3*a3y_pt*t1*t1)*dt/3.0 + y0_pt
x2_pt = (a2x_pt+3*a3x_pt*t1)*dt*dt/3.0 - x0_pt + 2*x1_pt
y2_pt = (a2y_pt+3*a3y_pt*t1)*dt*dt/3.0 - y0_pt + 2*y1_pt
x3_pt = a3x_pt*dt*dt*dt + x0_pt - 3*x1_pt + 3*x2_pt
y3_pt = a3y_pt*dt*dt*dt + y0_pt - 3*y1_pt + 3*y2_pt
result.append(normcurve_pt(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt))
return result
def trafo(self, params):
result = []
for rotation, at_pt in zip(self.rotation(params), self.at_pt(params)):
if rotation is invalid:
result.append(rotation)
else:
result.append(trafo.translate_pt(*at_pt) * rotation)
return result
def transformed(self, trafo):
x0_pt, y0_pt = trafo.apply_pt(self.x0_pt, self.y0_pt)
x1_pt, y1_pt = trafo.apply_pt(self.x1_pt, self.y1_pt)
x2_pt, y2_pt = trafo.apply_pt(self.x2_pt, self.y2_pt)
x3_pt, y3_pt = trafo.apply_pt(self.x3_pt, self.y3_pt)
return normcurve_pt(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt)
def outputPS(self, file, writer):
file.write("%g %g %g %g %g %g curveto\n" % (self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt))
def outputPDF(self, file, writer):
file.write("%f %f %f %f %f %f c\n" % (self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt))
def x_pt(self, t):
return ((( self.x3_pt-3*self.x2_pt+3*self.x1_pt-self.x0_pt)*t +
3*self.x0_pt-6*self.x1_pt+3*self.x2_pt)*t +
3*self.x1_pt-3*self.x0_pt)*t + self.x0_pt
def xdot_pt(self, t):
return ((3*self.x3_pt-9*self.x2_pt+9*self.x1_pt-3*self.x0_pt)*t +
6*self.x0_pt-12*self.x1_pt+6*self.x2_pt)*t + 3*self.x1_pt - 3*self.x0_pt
def xddot_pt(self, t):
return (6*self.x3_pt-18*self.x2_pt+18*self.x1_pt-6*self.x0_pt)*t + 6*self.x0_pt - 12*self.x1_pt + 6*self.x2_pt
def xdddot_pt(self, t):
return 6*self.x3_pt-18*self.x2_pt+18*self.x1_pt-6*self.x0_pt
def y_pt(self, t):
return ((( self.y3_pt-3*self.y2_pt+3*self.y1_pt-self.y0_pt)*t +
3*self.y0_pt-6*self.y1_pt+3*self.y2_pt)*t +
3*self.y1_pt-3*self.y0_pt)*t + self.y0_pt
def ydot_pt(self, t):
return ((3*self.y3_pt-9*self.y2_pt+9*self.y1_pt-3*self.y0_pt)*t +
6*self.y0_pt-12*self.y1_pt+6*self.y2_pt)*t + 3*self.y1_pt - 3*self.y0_pt
def yddot_pt(self, t):
return (6*self.y3_pt-18*self.y2_pt+18*self.y1_pt-6*self.y0_pt)*t + 6*self.y0_pt - 12*self.y1_pt + 6*self.y2_pt
def ydddot_pt(self, t):
return 6*self.y3_pt-18*self.y2_pt+18*self.y1_pt-6*self.y0_pt
# curve replacements used by midpointsplit:
# The replacements are normline_pt and normcurve_pt instances with an
# additional subparamtoparam function for proper conversion of the
# parametrization. Note that we only one direction (when a parameter
# gets calculated), since the other way around direction midpointsplit
# is not needed at all
class _leftnormline_pt(normline_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt, l1_pt, l2_pt, l3_pt):
normline_pt.__init__(self, x0_pt, y0_pt, x1_pt, y1_pt)
self.l1_pt = l1_pt
self.l2_pt = l2_pt
self.l3_pt = l3_pt
def subparamtoparam(self, param):
if 0 <= param <= 1:
params = mathutils.realpolyroots(self.l1_pt-2*self.l2_pt+self.l3_pt,
-3*self.l1_pt+3*self.l2_pt,
3*self.l1_pt,
-param*(self.l1_pt+self.l2_pt+self.l3_pt))
# we might get several solutions and choose the one closest to 0.5
# (we want the solution to be in the range 0 <= param <= 1; in case
# we get several solutions in this range, they all will be close to
# each other since l1_pt+l2_pt+l3_pt-l0_pt < epsilon)
params.sort(lambda t1, t2: cmp(abs(t1-0.5), abs(t2-0.5)))
return 0.5*params[0]
else:
# when we are outside the proper parameter range, we skip the non-linear
# transformation, since it becomes slow and it might even start to be
# numerically instable
return 0.5*param
class _rightnormline_pt(_leftnormline_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
def subparamtoparam(self, param):
return 0.5+_leftnormline_pt.subparamtoparam(self, param)
class _leftnormcurve_pt(normcurve_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
def subparamtoparam(self, param):
return 0.5*param
class _rightnormcurve_pt(normcurve_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
def subparamtoparam(self, param):
return 0.5+0.5*param
################################################################################
# normsubpath
################################################################################
class normsubpath:
"""sub path of a normalized path
A subpath consists of a list of normsubpathitems, i.e., normlines_pt and
normcurves_pt and can either be closed or not.
Some invariants, which have to be obeyed:
- All normsubpathitems have to be longer than epsilon pts.
- At the end there may be a normline (stored in self.skippedline) whose
length is shorter than epsilon -- it has to be taken into account
when adding further normsubpathitems
- The last point of a normsubpathitem and the first point of the next
element have to be equal.
- When the path is closed, the last point of last normsubpathitem has
to be equal to the first point of the first normsubpathitem.
- epsilon might be none, disallowing any numerics, but allowing for
arbitrary short paths. This is used in pdf output, where all paths need
to be transformed to normpaths.
"""
__slots__ = "normsubpathitems", "closed", "epsilon", "skippedline"
def __init__(self, normsubpathitems=[], closed=0, epsilon=_marker):
"""construct a normsubpath"""
if epsilon is _marker:
epsilon = _epsilon
self.epsilon = epsilon
# If one or more items appended to the normsubpath have been
# skipped (because their total length was shorter than epsilon),
# we remember this fact by a line because we have to take it
# properly into account when appending further normsubpathitems
self.skippedline = None
self.normsubpathitems = []
self.closed = 0
# a test (might be temporary)
for anormsubpathitem in normsubpathitems:
assert isinstance(anormsubpathitem, normsubpathitem), "only list of normsubpathitem instances allowed"
self.extend(normsubpathitems)
if closed:
self.close()
def __getitem__(self, i):
"""return normsubpathitem i"""
return self.normsubpathitems[i]
def __len__(self):
"""return number of normsubpathitems"""
return len(self.normsubpathitems)
def __str__(self):
l = ", ".join(map(str, self.normsubpathitems))
if self.closed:
return "normsubpath([%s], closed=1)" % l
else:
return "normsubpath([%s])" % l
def _distributeparams(self, params):
"""return a dictionary mapping normsubpathitemindices to a tuple
of a paramindices and normsubpathitemparams.
normsubpathitemindex specifies a normsubpathitem containing
one or several positions. paramindex specify the index of the
param in the original list and normsubpathitemparam is the
parameter value in the normsubpathitem.
"""
result = {}
for i, param in enumerate(params):
if param > 0:
index = int(param)
if index > len(self.normsubpathitems) - 1:
index = len(self.normsubpathitems) - 1
else:
index = 0
result.setdefault(index, ([], []))
result[index][0].append(i)
result[index][1].append(param - index)
return result
def append(self, anormsubpathitem):
"""append normsubpathitem
Fails on closed normsubpath.
"""
if self.epsilon is None:
self.normsubpathitems.append(anormsubpathitem)
else:
# consitency tests (might be temporary)
assert isinstance(anormsubpathitem, normsubpathitem), "only normsubpathitem instances allowed"
if self.skippedline:
assert math.hypot(*[x-y for x, y in zip(self.skippedline.atend_pt(), anormsubpathitem.atbegin_pt())]) < self.epsilon, "normsubpathitems do not match"
elif self.normsubpathitems:
assert math.hypot(*[x-y for x, y in zip(self.normsubpathitems[-1].atend_pt(), anormsubpathitem.atbegin_pt())]) < self.epsilon, "normsubpathitems do not match"
if self.closed:
raise NormpathException("Cannot append to closed normsubpath")
if self.skippedline:
xs_pt, ys_pt = self.skippedline.atbegin_pt()
else:
xs_pt, ys_pt = anormsubpathitem.atbegin_pt()
xe_pt, ye_pt = anormsubpathitem.atend_pt()
if (math.hypot(xe_pt-xs_pt, ye_pt-ys_pt) >= self.epsilon or
anormsubpathitem.arclen_pt(self.epsilon) >= self.epsilon):
if self.skippedline:
anormsubpathitem = anormsubpathitem.modifiedbegin_pt(xs_pt, ys_pt)
self.normsubpathitems.append(anormsubpathitem)
self.skippedline = None
else:
self.skippedline = normline_pt(xs_pt, ys_pt, xe_pt, ye_pt)
def arclen_pt(self):
"""return arc length in pts"""
return sum([npitem.arclen_pt(self.epsilon) for npitem in self.normsubpathitems])
def _arclentoparam_pt(self, lengths_pt):
"""return a tuple of params and the total length arc length in pts"""
# work on a copy which is counted down to negative values
lengths_pt = lengths_pt[:]
results = [None] * len(lengths_pt)
totalarclen = 0
for normsubpathindex, normsubpathitem in enumerate(self.normsubpathitems):
params, arclen = normsubpathitem._arclentoparam_pt(lengths_pt, self.epsilon)
for i in range(len(results)):
if results[i] is None:
lengths_pt[i] -= arclen
if lengths_pt[i] < 0 or normsubpathindex == len(self.normsubpathitems) - 1:
# overwrite the results until the length has become negative
results[i] = normsubpathindex + params[i]
totalarclen += arclen
return results, totalarclen
def arclentoparam_pt(self, lengths_pt):
"""return a tuple of params"""
return self._arclentoparam_pt(lengths_pt)[0]
def at_pt(self, params):
"""return coordinates at params in pts"""
if not self.normsubpathitems and self.skippedline:
return [self.skippedline.atbegin_pt()]*len(params)
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, point_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].at_pt(params)):
result[index] = point_pt
return result
def atbegin_pt(self):
"""return coordinates of first point in pts"""
if not self.normsubpathitems and self.skippedline:
return self.skippedline.atbegin_pt()
return self.normsubpathitems[0].atbegin_pt()
def atend_pt(self):
"""return coordinates of last point in pts"""
if self.skippedline:
return self.skippedline.atend_pt()
return self.normsubpathitems[-1].atend_pt()
def bbox(self):
"""return bounding box of normsubpath"""
if self.normsubpathitems:
abbox = self.normsubpathitems[0].bbox()
for anormpathitem in self.normsubpathitems[1:]:
abbox += anormpathitem.bbox()
return abbox
else:
return bboxmodule.empty()
def close(self):
"""close subnormpath
Fails on closed normsubpath.
"""
if self.closed:
raise NormpathException("Cannot close already closed normsubpath")
if not self.normsubpathitems:
if self.skippedline is None:
raise NormpathException("Cannot close empty normsubpath")
else:
raise NormpathException("Normsubpath too short, cannot be closed")
xs_pt, ys_pt = self.normsubpathitems[-1].atend_pt()
xe_pt, ye_pt = self.normsubpathitems[0].atbegin_pt()
self.append(normline_pt(xs_pt, ys_pt, xe_pt, ye_pt))
self.flushskippedline()
self.closed = 1
def copy(self):
"""return copy of normsubpath"""
# Since normsubpathitems are never modified inplace, we just
# need to copy the normsubpathitems list. We do not pass the
# normsubpathitems to the constructor to not repeat the checks
# for minimal length of each normsubpathitem.
result = normsubpath(epsilon=self.epsilon)
result.normsubpathitems = self.normsubpathitems[:]
result.closed = self.closed
# We can share the reference to skippedline, since it is a
# normsubpathitem as well and thus not modified in place either.
result.skippedline = self.skippedline
return result
def curvature_pt(self, params):
"""return the curvature at params in 1/pts
The result contain the invalid instance at positions, where the
curvature is undefined."""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, curvature_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].curvature_pt(params)):
result[index] = curvature_pt
return result
def curveradius_pt(self, params):
"""return the curvature radius at params in pts
The curvature radius is the inverse of the curvature. When the
curvature is 0, the invalid instance is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, radius_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].curveradius_pt(params)):
result[index] = radius_pt
return result
def extend(self, normsubpathitems):
"""extend path by normsubpathitems
Fails on closed normsubpath.
"""
for normsubpathitem in normsubpathitems:
self.append(normsubpathitem)
def flushskippedline(self):
"""flush the skippedline, i.e. apply it to the normsubpath
remove the skippedline by modifying the end point of the existing normsubpath
"""
while self.skippedline:
try:
lastnormsubpathitem = self.normsubpathitems.pop()
except IndexError:
raise ValueError("normsubpath too short to flush the skippedline")
lastnormsubpathitem = lastnormsubpathitem.modifiedend_pt(*self.skippedline.atend_pt())
self.skippedline = None
self.append(lastnormsubpathitem)
def intersect(self, other):
"""intersect self with other normsubpath
Returns a tuple of lists consisting of the parameter values
of the intersection points of the corresponding normsubpath.
"""
intersections_a = []
intersections_b = []
epsilon = min(self.epsilon, other.epsilon)
# Intersect all subpaths of self with the subpaths of other, possibly including
# one intersection point several times
for t_a, pitem_a in enumerate(self.normsubpathitems):
for t_b, pitem_b in enumerate(other.normsubpathitems):
for intersection_a, intersection_b in pitem_a.intersect(pitem_b, epsilon):
intersections_a.append(intersection_a + t_a)
intersections_b.append(intersection_b + t_b)
# although intersectipns_a are sorted for the different normsubpathitems,
# within a normsubpathitem, the ordering has to be ensured separately:
intersections = zip(intersections_a, intersections_b)
intersections.sort()
intersections_a = [a for a, b in intersections]
intersections_b = [b for a, b in intersections]
# for symmetry reasons we enumerate intersections_a as well, although
# they are already sorted (note we do not need to sort intersections_a)
intersections_a = zip(intersections_a, range(len(intersections_a)))
intersections_b = zip(intersections_b, range(len(intersections_b)))
intersections_b.sort()
# now we search for intersections points which are closer together than epsilon
# This task is handled by the following function
def closepoints(normsubpath, intersections):
split = normsubpath.segments([0] + [intersection for intersection, index in intersections] + [len(normsubpath)])
result = []
if normsubpath.closed:
# note that the number of segments of a closed path is off by one
# compared to an open path
i = 0
while i < len(split):
splitnormsubpath = split[i]
j = i
while not splitnormsubpath.normsubpathitems: # i.e. while "is short"
ip1, ip2 = intersections[i-1][1], intersections[j][1]
if ip1<ip2:
result.append((ip1, ip2))
else:
result.append((ip2, ip1))
j += 1
if j == len(split):
j = 0
if j < len(split):
splitnormsubpath = splitnormsubpath.joined(split[j])
else:
break
i += 1
else:
i = 1
while i < len(split)-1:
splitnormsubpath = split[i]
j = i
while not splitnormsubpath.normsubpathitems: # i.e. while "is short"
ip1, ip2 = intersections[i-1][1], intersections[j][1]
if ip1<ip2:
result.append((ip1, ip2))
else:
result.append((ip2, ip1))
j += 1
if j < len(split)-1:
splitnormsubpath = splitnormsubpath.joined(split[j])
else:
break
i += 1
return result
closepoints_a = closepoints(self, intersections_a)
closepoints_b = closepoints(other, intersections_b)
# map intersection point to lowest point which is equivalent to the
# point
equivalentpoints = list(range(len(intersections_a)))
for closepoint_a in closepoints_a:
for closepoint_b in closepoints_b:
if closepoint_a == closepoint_b:
for i in range(closepoint_a[1], len(equivalentpoints)):
if equivalentpoints[i] == closepoint_a[1]:
equivalentpoints[i] = closepoint_a[0]
# determine the remaining intersection points
intersectionpoints = {}
for point in equivalentpoints:
intersectionpoints[point] = 1
# build result
result = []
intersectionpointskeys = intersectionpoints.keys()
intersectionpointskeys.sort()
for point in intersectionpointskeys:
for intersection_a, index_a in intersections_a:
if index_a == point:
result_a = intersection_a
for intersection_b, index_b in intersections_b:
if index_b == point:
result_b = intersection_b
result.append((result_a, result_b))
# note that the result is sorted in a, since we sorted
# intersections_a in the very beginning
return [x for x, y in result], [y for x, y in result]
def join(self, other):
"""join other normsubpath inplace
Fails on closed normsubpath. Fails to join closed normsubpath.
"""
if other.closed:
raise NormpathException("Cannot join closed normsubpath")
if self.normsubpathitems:
# insert connection line
x0_pt, y0_pt = self.atend_pt()
x1_pt, y1_pt = other.atbegin_pt()
self.append(normline_pt(x0_pt, y0_pt, x1_pt, y1_pt))
# append other normsubpathitems
self.extend(other.normsubpathitems)
if other.skippedline:
self.append(other.skippedline)
def joined(self, other):
"""return joined self and other
Fails on closed normsubpath. Fails to join closed normsubpath.
"""
result = self.copy()
result.join(other)
return result
def _paramtoarclen_pt(self, params):
"""return a tuple of arc lengths and the total arc length in pts"""
if not self.normsubpathitems:
return [0] * len(params), 0
result = [None] * len(params)
totalarclen_pt = 0
distributeparams = self._distributeparams(params)
for normsubpathitemindex in range(len(self.normsubpathitems)):
if distributeparams.has_key(normsubpathitemindex):
indices, params = distributeparams[normsubpathitemindex]
arclens_pt, normsubpathitemarclen_pt = self.normsubpathitems[normsubpathitemindex]._paramtoarclen_pt(params, self.epsilon)
for index, arclen_pt in zip(indices, arclens_pt):
result[index] = totalarclen_pt + arclen_pt
totalarclen_pt += normsubpathitemarclen_pt
else:
totalarclen_pt += self.normsubpathitems[normsubpathitemindex].arclen_pt(self.epsilon)
return result, totalarclen_pt
def pathitems(self):
"""return list of pathitems"""
if not self.normsubpathitems:
return []
# remove trailing normline_pt of closed subpaths
if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
normsubpathitems = self.normsubpathitems[:-1]
else:
normsubpathitems = self.normsubpathitems
result = [path.moveto_pt(*self.atbegin_pt())]
for normsubpathitem in normsubpathitems:
result.append(normsubpathitem.pathitem())
if self.closed:
result.append(path.closepath())
return result
def reversed(self):
"""return reversed normsubpath"""
nnormpathitems = []
for i in range(len(self.normsubpathitems)):
nnormpathitems.append(self.normsubpathitems[-(i+1)].reversed())
return normsubpath(nnormpathitems, self.closed, self.epsilon)
def rotation(self, params):
"""return rotations at params"""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, rotation in zip(indices, self.normsubpathitems[normsubpathitemindex].rotation(params)):
result[index] = rotation
return result
def segments(self, params):
"""return segments of the normsubpath
The returned list of normsubpaths for the segments between
the params. params need to contain at least two values.
For a closed normsubpath the last segment result is joined to
the first one when params starts with 0 and ends with len(self).
or params starts with len(self) and ends with 0. Thus a segments
operation on a closed normsubpath might properly join those the
first and the last part to take into account the closed nature of
the normsubpath. However, for intermediate parameters, closepath
is not taken into account, i.e. when walking backwards you do not
loop over the closepath forwardly. The special values 0 and
len(self) for the first and the last parameter should be given as
integers, i.e. no finite precision is used when checking for
equality."""
if len(params) < 2:
raise ValueError("at least two parameters needed in segments")
result = [normsubpath(epsilon=self.epsilon)]
# instead of distribute the parameters, we need to keep their
# order and collect parameters for the needed segments of
# normsubpathitem with index collectindex
collectparams = []
collectindex = None
for param in params:
# calculate index and parameter for corresponding normsubpathitem
if param > 0:
index = int(param)
if index > len(self.normsubpathitems) - 1:
index = len(self.normsubpathitems) - 1
param -= index
else:
index = 0
if index != collectindex:
if collectindex is not None:
# append end point depening on the forthcoming index
if index > collectindex:
collectparams.append(1)
else:
collectparams.append(0)
# get segments of the normsubpathitem and add them to the result
segments = self.normsubpathitems[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normsubpath([segment], epsilon=self.epsilon) for segment in segments[1:]])
# add normsubpathitems and first segment parameter to close the
# gap to the forthcoming index
if index > collectindex:
for i in range(collectindex+1, index):
result[-1].append(self.normsubpathitems[i])
collectparams = [0]
else:
for i in range(collectindex-1, index, -1):
result[-1].append(self.normsubpathitems[i].reversed())
collectparams = [1]
collectindex = index
collectparams.append(param)
# add remaining collectparams to the result
segments = self.normsubpathitems[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normsubpath([segment], epsilon=self.epsilon) for segment in segments[1:]])
if self.closed:
# join last and first segment together if the normsubpath was
# originally closed and first and the last parameters are the
# beginning and end points of the normsubpath
if ( ( params[0] == 0 and params[-1] == len(self.normsubpathitems) ) or
( params[-1] == 0 and params[0] == len(self.normsubpathitems) ) ):
result[-1].normsubpathitems.extend(result[0].normsubpathitems)
result = result[-1:] + result[1:-1]
return result
def trafo(self, params):
"""return transformations at params"""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, trafo in zip(indices, self.normsubpathitems[normsubpathitemindex].trafo(params)):
result[index] = trafo
return result
def transformed(self, trafo):
"""return transformed path"""
nnormsubpath = normsubpath(epsilon=self.epsilon)
for pitem in self.normsubpathitems:
nnormsubpath.append(pitem.transformed(trafo))
if self.closed:
nnormsubpath.close()
elif self.skippedline is not None:
nnormsubpath.append(self.skippedline.transformed(trafo))
return nnormsubpath
def outputPS(self, file, writer):
# if the normsubpath is closed, we must not output a normline at
# the end
if not self.normsubpathitems:
return
if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
assert len(self.normsubpathitems) > 1, "a closed normsubpath should contain more than a single normline_pt"
normsubpathitems = self.normsubpathitems[:-1]
else:
normsubpathitems = self.normsubpathitems
file.write("%g %g moveto\n" % self.atbegin_pt())
for anormsubpathitem in normsubpathitems:
anormsubpathitem.outputPS(file, writer)
if self.closed:
file.write("closepath\n")
def outputPDF(self, file, writer):
# if the normsubpath is closed, we must not output a normline at
# the end
if not self.normsubpathitems:
return
if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
assert len(self.normsubpathitems) > 1, "a closed normsubpath should contain more than a single normline_pt"
normsubpathitems = self.normsubpathitems[:-1]
else:
normsubpathitems = self.normsubpathitems
file.write("%f %f m\n" % self.atbegin_pt())
for anormsubpathitem in normsubpathitems:
anormsubpathitem.outputPDF(file, writer)
if self.closed:
file.write("h\n")
################################################################################
# normpath
################################################################################
class normpathparam:
"""parameter of a certain point along a normpath"""
__slots__ = "normpath", "normsubpathindex", "normsubpathparam"
def __init__(self, normpath, normsubpathindex, normsubpathparam):
self.normpath = normpath
self.normsubpathindex = normsubpathindex
self.normsubpathparam = normsubpathparam
float(normsubpathparam)
def __str__(self):
return "normpathparam(%s, %s, %s)" % (self.normpath, self.normsubpathindex, self.normsubpathparam)
def __add__(self, other):
if isinstance(other, normpathparam):
assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) +
other.normpath.paramtoarclen_pt(other))
else:
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) + unit.topt(other))
__radd__ = __add__
def __sub__(self, other):
if isinstance(other, normpathparam):
assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) -
other.normpath.paramtoarclen_pt(other))
else:
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) - unit.topt(other))
def __rsub__(self, other):
# other has to be a length in this case
return self.normpath.arclentoparam_pt(-self.normpath.paramtoarclen_pt(self) + unit.topt(other))
def __mul__(self, factor):
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) * factor)
__rmul__ = __mul__
def __div__(self, divisor):
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) / divisor)
def __neg__(self):
return self.normpath.arclentoparam_pt(-self.normpath.paramtoarclen_pt(self))
def __cmp__(self, other):
if isinstance(other, normpathparam):
assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
return cmp((self.normsubpathindex, self.normsubpathparam), (other.normsubpathindex, other.normsubpathparam))
else:
return cmp(self.normpath.paramtoarclen_pt(self), unit.topt(other))
def arclen_pt(self):
"""return arc length in pts corresponding to the normpathparam """
return self.normpath.paramtoarclen_pt(self)
def arclen(self):
"""return arc length corresponding to the normpathparam """
return self.normpath.paramtoarclen(self)
def _valueorlistmethod(method):
"""Creates a method which takes a single argument or a list and
returns a single value or a list out of method, which always
works on lists."""
def wrappedmethod(self, valueorlist, *args, **kwargs):
try:
for item in valueorlist:
break
except:
return method(self, [valueorlist], *args, **kwargs)[0]
return method(self, valueorlist, *args, **kwargs)
return wrappedmethod
class normpath:
"""normalized path
A normalized path consists of a list of normsubpaths.
"""
def __init__(self, normsubpaths=None):
"""construct a normpath from a list of normsubpaths"""
if normsubpaths is None:
self.normsubpaths = [] # make a fresh list
else:
self.normsubpaths = normsubpaths
for subpath in normsubpaths:
assert isinstance(subpath, normsubpath), "only list of normsubpath instances allowed"
def __add__(self, other):
"""create new normpath out of self and other"""
result = self.copy()
result += other
return result
def __iadd__(self, other):
"""add other inplace"""
for normsubpath in other.normpath().normsubpaths:
self.normsubpaths.append(normsubpath.copy())
return self
def __getitem__(self, i):
"""return normsubpath i"""
return self.normsubpaths[i]
def __len__(self):
"""return the number of normsubpaths"""
return len(self.normsubpaths)
def __str__(self):
return "normpath([%s])" % ", ".join(map(str, self.normsubpaths))
def _convertparams(self, params, convertmethod):
"""return params with all non-normpathparam arguments converted by convertmethod
usecases:
- self._convertparams(params, self.arclentoparam_pt)
- self._convertparams(params, self.arclentoparam)
"""
converttoparams = []
convertparamindices = []
for i, param in enumerate(params):
if not isinstance(param, normpathparam):
converttoparams.append(param)
convertparamindices.append(i)
if converttoparams:
params = params[:]
for i, param in zip(convertparamindices, convertmethod(converttoparams)):
params[i] = param
return params
def _distributeparams(self, params):
"""return a dictionary mapping subpathindices to a tuple of a paramindices and subpathparams
subpathindex specifies a subpath containing one or several positions.
paramindex specify the index of the normpathparam in the original list and
subpathparam is the parameter value in the subpath.
"""
result = {}
for i, param in enumerate(params):
assert param.normpath is self, "normpathparam has to belong to this path"
result.setdefault(param.normsubpathindex, ([], []))
result[param.normsubpathindex][0].append(i)
result[param.normsubpathindex][1].append(param.normsubpathparam)
return result
def append(self, item):
"""append a normpath by a normsubpath or a pathitem"""
if isinstance(item, normsubpath):
# the normsubpaths list can be appended by a normsubpath only
self.normsubpaths.append(item)
elif isinstance(item, path.pathitem):
# ... but we are kind and allow for regular path items as well
# in order to make a normpath to behave more like a regular path
if self.normsubpaths:
context = path.context(*(self.normsubpaths[-1].atend_pt() +
self.normsubpaths[-1].atbegin_pt()))
item.updatenormpath(self, context)
else:
self.normsubpaths = item.createnormpath(self).normsubpaths
def arclen_pt(self):
"""return arc length in pts"""
return sum([normsubpath.arclen_pt() for normsubpath in self.normsubpaths])
def arclen(self):
"""return arc length"""
return self.arclen_pt() * unit.t_pt
def _arclentoparam_pt(self, lengths_pt):
"""return the params matching the given lengths_pt"""
# work on a copy which is counted down to negative values
lengths_pt = lengths_pt[:]
results = [None] * len(lengths_pt)
for normsubpathindex, normsubpath in enumerate(self.normsubpaths):
params, arclen = normsubpath._arclentoparam_pt(lengths_pt)
done = 1
for i, result in enumerate(results):
if results[i] is None:
lengths_pt[i] -= arclen
if lengths_pt[i] < 0 or normsubpathindex == len(self.normsubpaths) - 1:
# overwrite the results until the length has become negative
results[i] = normpathparam(self, normsubpathindex, params[i])
done = 0
if done:
break
return results
def arclentoparam_pt(self, lengths_pt):
"""return the param(s) matching the given length(s)_pt in pts"""
pass
arclentoparam_pt = _valueorlistmethod(_arclentoparam_pt)
def arclentoparam(self, lengths):
"""return the param(s) matching the given length(s)"""
return self._arclentoparam_pt([unit.topt(l) for l in lengths])
arclentoparam = _valueorlistmethod(arclentoparam)
def _at_pt(self, params):
"""return coordinates of normpath in pts at params"""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, point_pt in zip(indices, self.normsubpaths[normsubpathindex].at_pt(params)):
result[index] = point_pt
return result
def at_pt(self, params):
"""return coordinates of normpath in pts at param(s) or lengths in pts"""
return self._at_pt(self._convertparams(params, self.arclentoparam_pt))
at_pt = _valueorlistmethod(at_pt)
def at(self, params):
"""return coordinates of normpath at param(s) or arc lengths"""
return [(x_pt * unit.t_pt, y_pt * unit.t_pt)
for x_pt, y_pt in self._at_pt(self._convertparams(params, self.arclentoparam))]
at = _valueorlistmethod(at)
def atbegin_pt(self):
"""return coordinates of the beginning of first subpath in normpath in pts"""
if self.normsubpaths:
return self.normsubpaths[0].atbegin_pt()
else:
raise NormpathException("cannot return first point of empty path")
def atbegin(self):
"""return coordinates of the beginning of first subpath in normpath"""
x, y = self.atbegin_pt()
return x * unit.t_pt, y * unit.t_pt
def atend_pt(self):
"""return coordinates of the end of last subpath in normpath in pts"""
if self.normsubpaths:
return self.normsubpaths[-1].atend_pt()
else:
raise NormpathException("cannot return last point of empty path")
def atend(self):
"""return coordinates of the end of last subpath in normpath"""
x, y = self.atend_pt()
return x * unit.t_pt, y * unit.t_pt
def bbox(self):
"""return bbox of normpath"""
abbox = bboxmodule.empty()
for normsubpath in self.normsubpaths:
abbox += normsubpath.bbox()
return abbox
def begin(self):
"""return param corresponding of the beginning of the normpath"""
if self.normsubpaths:
return normpathparam(self, 0, 0)
else:
raise NormpathException("empty path")
def copy(self):
"""return copy of normpath"""
result = normpath()
for normsubpath in self.normsubpaths:
result.append(normsubpath.copy())
return result
def _curvature_pt(self, params):
"""return the curvature in 1/pts at params
When the curvature is undefined, the invalid instance is returned."""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, curvature_pt in zip(indices, self.normsubpaths[normsubpathindex].curvature_pt(params)):
result[index] = curvature_pt
return result
def curvature_pt(self, params):
"""return the curvature in 1/pt at params
The curvature radius is the inverse of the curvature. When the
curvature is undefined, the invalid instance is returned. Note that
this radius can be negative or positive, depending on the sign of the
curvature."""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, curv_pt in zip(indices, self.normsubpaths[normsubpathindex].curvature_pt(params)):
result[index] = curv_pt
return result
curvature_pt = _valueorlistmethod(curvature_pt)
def _curveradius_pt(self, params):
"""return the curvature radius at params in pts
The curvature radius is the inverse of the curvature. When the
curvature is 0, None is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, radius_pt in zip(indices, self.normsubpaths[normsubpathindex].curveradius_pt(params)):
result[index] = radius_pt
return result
def curveradius_pt(self, params):
"""return the curvature radius in pts at param(s) or arc length(s) in pts
The curvature radius is the inverse of the curvature. When the
curvature is 0, None is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
return self._curveradius_pt(self._convertparams(params, self.arclentoparam_pt))
curveradius_pt = _valueorlistmethod(curveradius_pt)
def curveradius(self, params):
"""return the curvature radius at param(s) or arc length(s)
The curvature radius is the inverse of the curvature. When the
curvature is 0, None is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
result = []
for radius_pt in self._curveradius_pt(self._convertparams(params, self.arclentoparam)):
if radius_pt is not invalid:
result.append(radius_pt * unit.t_pt)
else:
result.append(invalid)
return result
curveradius = _valueorlistmethod(curveradius)
def end(self):
"""return param corresponding of the end of the path"""
if self.normsubpaths:
return normpathparam(self, len(self)-1, len(self.normsubpaths[-1]))
else:
raise NormpathException("empty path")
def extend(self, normsubpaths):
"""extend path by normsubpaths or pathitems"""
for anormsubpath in normsubpaths:
# use append to properly handle regular path items as well as normsubpaths
self.append(anormsubpath)
def intersect(self, other):
"""intersect self with other path
Returns a tuple of lists consisting of the parameter values
of the intersection points of the corresponding normpath.
"""
other = other.normpath()
# here we build up the result
intersections = ([], [])
# Intersect all normsubpaths of self with the normsubpaths of
# other.
for ia, normsubpath_a in enumerate(self.normsubpaths):
for ib, normsubpath_b in enumerate(other.normsubpaths):
for intersection in zip(*normsubpath_a.intersect(normsubpath_b)):
intersections[0].append(normpathparam(self, ia, intersection[0]))
intersections[1].append(normpathparam(other, ib, intersection[1]))
return intersections
def join(self, other):
"""join other normsubpath inplace
Both normpaths must contain at least one normsubpath.
The last normsubpath of self will be joined to the first
normsubpath of other.
"""
other = other.normpath()
if not self.normsubpaths:
raise NormpathException("cannot join to empty path")
if not other.normsubpaths:
raise PathException("cannot join empty path")
self.normsubpaths[-1].join(other.normsubpaths[0])
self.normsubpaths.extend(other.normsubpaths[1:])
def joined(self, other):
"""return joined self and other
Both normpaths must contain at least one normsubpath.
The last normsubpath of self will be joined to the first
normsubpath of other.
"""
result = self.copy()
result.join(other.normpath())
return result
# << operator also designates joining
__lshift__ = joined
def normpath(self):
"""return a normpath, i.e. self"""
return self
def _paramtoarclen_pt(self, params):
"""return arc lengths in pts matching the given params"""
result = [None] * len(params)
totalarclen_pt = 0
distributeparams = self._distributeparams(params)
for normsubpathindex in range(max(distributeparams.keys()) + 1):
if distributeparams.has_key(normsubpathindex):
indices, params = distributeparams[normsubpathindex]
arclens_pt, normsubpatharclen_pt = self.normsubpaths[normsubpathindex]._paramtoarclen_pt(params)
for index, arclen_pt in zip(indices, arclens_pt):
result[index] = totalarclen_pt + arclen_pt
totalarclen_pt += normsubpatharclen_pt
else:
totalarclen_pt += self.normsubpaths[normsubpathindex].arclen_pt()
return result
def paramtoarclen_pt(self, params):
"""return arc length(s) in pts matching the given param(s)"""
paramtoarclen_pt = _valueorlistmethod(_paramtoarclen_pt)
def paramtoarclen(self, params):
"""return arc length(s) matching the given param(s)"""
return [arclen_pt * unit.t_pt for arclen_pt in self._paramtoarclen_pt(params)]
paramtoarclen = _valueorlistmethod(paramtoarclen)
def path(self):
"""return path corresponding to normpath"""
pathitems = []
for normsubpath in self.normsubpaths:
pathitems.extend(normsubpath.pathitems())
return path.path(*pathitems)
def reversed(self):
"""return reversed path"""
nnormpath = normpath()
for i in range(len(self.normsubpaths)):
nnormpath.normsubpaths.append(self.normsubpaths[-(i+1)].reversed())
return nnormpath
def _rotation(self, params):
"""return rotation at params"""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, rotation in zip(indices, self.normsubpaths[normsubpathindex].rotation(params)):
result[index] = rotation
return result
def rotation_pt(self, params):
"""return rotation at param(s) or arc length(s) in pts"""
return self._rotation(self._convertparams(params, self.arclentoparam_pt))
rotation_pt = _valueorlistmethod(rotation_pt)
def rotation(self, params):
"""return rotation at param(s) or arc length(s)"""
return self._rotation(self._convertparams(params, self.arclentoparam))
rotation = _valueorlistmethod(rotation)
def _split_pt(self, params):
"""split path at params and return list of normpaths"""
if not params:
return [self.copy()]
# instead of distributing the parameters, we need to keep their
# order and collect parameters for splitting of normsubpathitem
# with index collectindex
collectindex = None
for param in params:
if param.normsubpathindex != collectindex:
if collectindex is not None:
# append end point depening on the forthcoming index
if param.normsubpathindex > collectindex:
collectparams.append(len(self.normsubpaths[collectindex]))
else:
collectparams.append(0)
# get segments of the normsubpath and add them to the result
segments = self.normsubpaths[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normpath([segment]) for segment in segments[1:]])
# add normsubpathitems and first segment parameter to close the
# gap to the forthcoming index
if param.normsubpathindex > collectindex:
for i in range(collectindex+1, param.normsubpathindex):
result[-1].append(self.normsubpaths[i])
collectparams = [0]
else:
for i in range(collectindex-1, param.normsubpathindex, -1):
result[-1].append(self.normsubpaths[i].reversed())
collectparams = [len(self.normsubpaths[param.normsubpathindex])]
else:
result = [normpath(self.normsubpaths[:param.normsubpathindex])]
collectparams = [0]
collectindex = param.normsubpathindex
collectparams.append(param.normsubpathparam)
# add remaining collectparams to the result
collectparams.append(len(self.normsubpaths[collectindex]))
segments = self.normsubpaths[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normpath([segment]) for segment in segments[1:]])
result[-1].extend(self.normsubpaths[collectindex+1:])
return result
def split_pt(self, params):
"""split path at param(s) or arc length(s) in pts and return list of normpaths"""
try:
for param in params:
break
except:
params = [params]
return self._split_pt(self._convertparams(params, self.arclentoparam_pt))
def split(self, params):
"""split path at param(s) or arc length(s) and return list of normpaths"""
try:
for param in params:
break
except:
params = [params]
return self._split_pt(self._convertparams(params, self.arclentoparam))
def _tangent(self, params, length_pt):
"""return tangent vector of path at params
If length_pt in pts is not None, the tangent vector will be scaled to
the desired length.
"""
result = [None] * len(params)
tangenttemplate = path.line_pt(0, 0, length_pt, 0).normpath()
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, atrafo in zip(indices, self.normsubpaths[normsubpathindex].trafo(params)):
if atrafo is invalid:
result[index] = invalid
else:
result[index] = tangenttemplate.transformed(atrafo)
return result
def tangent_pt(self, params, length_pt):
"""return tangent vector of path at param(s) or arc length(s) in pts
If length in pts is not None, the tangent vector will be scaled to
the desired length.
"""
return self._tangent(self._convertparams(params, self.arclentoparam_pt), length_pt)
tangent_pt = _valueorlistmethod(tangent_pt)
def tangent(self, params, length):
"""return tangent vector of path at param(s) or arc length(s)
If length is not None, the tangent vector will be scaled to
the desired length.
"""
return self._tangent(self._convertparams(params, self.arclentoparam), unit.topt(length))
tangent = _valueorlistmethod(tangent)
def _trafo(self, params):
"""return transformation at params"""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, trafo in zip(indices, self.normsubpaths[normsubpathindex].trafo(params)):
result[index] = trafo
return result
def trafo_pt(self, params):
"""return transformation at param(s) or arc length(s) in pts"""
return self._trafo(self._convertparams(params, self.arclentoparam_pt))
trafo_pt = _valueorlistmethod(trafo_pt)
def trafo(self, params):
"""return transformation at param(s) or arc length(s)"""
return self._trafo(self._convertparams(params, self.arclentoparam))
trafo = _valueorlistmethod(trafo)
def transformed(self, trafo):
"""return transformed normpath"""
return normpath([normsubpath.transformed(trafo) for normsubpath in self.normsubpaths])
def outputPS(self, file, writer):
for normsubpath in self.normsubpaths:
normsubpath.outputPS(file, writer)
def outputPDF(self, file, writer):
for normsubpath in self.normsubpaths:
normsubpath.outputPDF(file, writer)
|