AllOrNothing.py :  » Security » PyCrypto » pycrypto-2.0.1 » Protocol » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Security » PyCrypto 
PyCrypto » pycrypto 2.0.1 » Protocol » AllOrNothing.py
"""This file implements all-or-nothing package transformations.

An all-or-nothing package transformation is one in which some text is
transformed into message blocks, such that all blocks must be obtained before
the reverse transformation can be applied.  Thus, if any blocks are corrupted
or lost, the original message cannot be reproduced.

An all-or-nothing package transformation is not encryption, although a block
cipher algorithm is used.  The encryption key is randomly generated and is
extractable from the message blocks.

This class implements the All-Or-Nothing package transformation algorithm
described in:

Ronald L. Rivest.  "All-Or-Nothing Encryption and The Package Transform"
http://theory.lcs.mit.edu/~rivest/fusion.pdf

"""

__revision__ = "$Id: AllOrNothing.py,v 1.8 2003/02/28 15:23:20 akuchling Exp $"

import operator
import string
from Crypto.Util.number import bytes_to_long,long_to_bytes



class AllOrNothing:
    """Class implementing the All-or-Nothing package transform.

    Methods for subclassing:

        _inventkey(key_size):
            Returns a randomly generated key.  Subclasses can use this to
            implement better random key generating algorithms.  The default
            algorithm is probably not very cryptographically secure.

    """

    def __init__(self, ciphermodule, mode=None, IV=None):
        """AllOrNothing(ciphermodule, mode=None, IV=None)

        ciphermodule is a module implementing the cipher algorithm to
        use.  It must provide the PEP272 interface.

        Note that the encryption key is randomly generated
        automatically when needed.  Optional arguments mode and IV are
        passed directly through to the ciphermodule.new() method; they
        are the feedback mode and initialization vector to use.  All
        three arguments must be the same for the object used to create
        the digest, and to undigest'ify the message blocks.
        """

        self.__ciphermodule = ciphermodule
        self.__mode = mode
        self.__IV = IV
        self.__key_size = ciphermodule.key_size
        if self.__key_size == 0:
            self.__key_size = 16

    __K0digit = chr(0x69)

    def digest(self, text):
        """digest(text:string) : [string]

        Perform the All-or-Nothing package transform on the given
        string.  Output is a list of message blocks describing the
        transformed text, where each block is a string of bit length equal
        to the ciphermodule's block_size.
        """

        # generate a random session key and K0, the key used to encrypt the
        # hash blocks.  Rivest calls this a fixed, publically-known encryption
        # key, but says nothing about the security implications of this key or
        # how to choose it.
        key = self._inventkey(self.__key_size)
        K0 = self.__K0digit * self.__key_size

        # we need two cipher objects here, one that is used to encrypt the
        # message blocks and one that is used to encrypt the hashes.  The
        # former uses the randomly generated key, while the latter uses the
        # well-known key.
        mcipher = self.__newcipher(key)
        hcipher = self.__newcipher(K0)

        # Pad the text so that its length is a multiple of the cipher's
        # block_size.  Pad with trailing spaces, which will be eliminated in
        # the undigest() step.
        block_size = self.__ciphermodule.block_size
        padbytes = block_size - (len(text) % block_size)
        text = text + ' ' * padbytes

        # Run through the algorithm:
        # s: number of message blocks (size of text / block_size)
        # input sequence: m1, m2, ... ms
        # random key K' (`key' in the code)
        # Compute output sequence: m'1, m'2, ... m's' for s' = s + 1
        # Let m'i = mi ^ E(K', i) for i = 1, 2, 3, ..., s
        # Let m's' = K' ^ h1 ^ h2 ^ ... hs
        # where hi = E(K0, m'i ^ i) for i = 1, 2, ... s
        #
        # The one complication I add is that the last message block is hard
        # coded to the number of padbytes added, so that these can be stripped
        # during the undigest() step
        s = len(text) / block_size
        blocks = []
        hashes = []
        for i in range(1, s+1):
            start = (i-1) * block_size
            end = start + block_size
            mi = text[start:end]
            assert len(mi) == block_size
            cipherblock = mcipher.encrypt(long_to_bytes(i, block_size))
            mticki = bytes_to_long(mi) ^ bytes_to_long(cipherblock)
            blocks.append(mticki)
            # calculate the hash block for this block
            hi = hcipher.encrypt(long_to_bytes(mticki ^ i, block_size))
            hashes.append(bytes_to_long(hi))

        # Add the padbytes length as a message block
        i = i + 1
        cipherblock = mcipher.encrypt(long_to_bytes(i, block_size))
        mticki = padbytes ^ bytes_to_long(cipherblock)
        blocks.append(mticki)

        # calculate this block's hash
        hi = hcipher.encrypt(long_to_bytes(mticki ^ i, block_size))
        hashes.append(bytes_to_long(hi))

        # Now calculate the last message block of the sequence 1..s'.  This
        # will contain the random session key XOR'd with all the hash blocks,
        # so that for undigest(), once all the hash blocks are calculated, the
        # session key can be trivially extracted.  Calculating all the hash
        # blocks requires that all the message blocks be received, thus the
        # All-or-Nothing algorithm succeeds.
        mtick_stick = bytes_to_long(key) ^ reduce(operator.xor, hashes)
        blocks.append(mtick_stick)

        # we convert the blocks to strings since in Python, byte sequences are
        # always represented as strings.  This is more consistent with the
        # model that encryption and hash algorithms always operate on strings.
        return map(long_to_bytes, blocks)


    def undigest(self, blocks):
        """undigest(blocks : [string]) : string

        Perform the reverse package transformation on a list of message
        blocks.  Note that the ciphermodule used for both transformations
        must be the same.  blocks is a list of strings of bit length
        equal to the ciphermodule's block_size.
        """

        # better have at least 2 blocks, for the padbytes package and the hash
        # block accumulator
        if len(blocks) < 2:
            raise ValueError, "List must be at least length 2."

        # blocks is a list of strings.  We need to deal with them as long
        # integers
        blocks = map(bytes_to_long, blocks)

        # Calculate the well-known key, to which the hash blocks are
        # encrypted, and create the hash cipher.
        K0 = self.__K0digit * self.__key_size
        hcipher = self.__newcipher(K0)

        # Since we have all the blocks (or this method would have been called
        # prematurely), we can calcualte all the hash blocks.
        hashes = []
        for i in range(1, len(blocks)):
            mticki = blocks[i-1] ^ i
            hi = hcipher.encrypt(long_to_bytes(mticki))
            hashes.append(bytes_to_long(hi))

        # now we can calculate K' (key).  remember the last block contains
        # m's' which we don't include here
        key = blocks[-1] ^ reduce(operator.xor, hashes)

        # and now we can create the cipher object
        mcipher = self.__newcipher(long_to_bytes(key))
        block_size = self.__ciphermodule.block_size

        # And we can now decode the original message blocks
        parts = []
        for i in range(1, len(blocks)):
            cipherblock = mcipher.encrypt(long_to_bytes(i, block_size))
            mi = blocks[i-1] ^ bytes_to_long(cipherblock)
            parts.append(mi)

        # The last message block contains the number of pad bytes appended to
        # the original text string, such that its length was an even multiple
        # of the cipher's block_size.  This number should be small enough that
        # the conversion from long integer to integer should never overflow
        padbytes = int(parts[-1])
        text = string.join(map(long_to_bytes, parts[:-1]), '')
        return text[:-padbytes]

    def _inventkey(self, key_size):
        # TBD: Not a very secure algorithm.  Eventually, I'd like to use JHy's
        # kernelrand module
        import time
        from Crypto.Util import randpool
        # TBD: key_size * 2 to work around possible bug in RandomPool?
        pool = randpool.RandomPool(key_size * 2)
        while key_size > pool.entropy:
            pool.add_event()

        # we now have enough entropy in the pool to get a key_size'd key
        return pool.get_bytes(key_size)

    def __newcipher(self, key):
        if self.__mode is None and self.__IV is None:
            return self.__ciphermodule.new(key)
        elif self.__IV is None:
            return self.__ciphermodule.new(key, self.__mode)
        else:
            return self.__ciphermodule.new(key, self.__mode, self.__IV)



if __name__ == '__main__':
    import sys
    import getopt
    import base64

    usagemsg = '''\
Test module usage: %(program)s [-c cipher] [-l] [-h]

Where:
    --cipher module
    -c module
        Cipher module to use.  Default: %(ciphermodule)s

    --aslong
    -l
        Print the encoded message blocks as long integers instead of base64
        encoded strings

    --help
    -h
        Print this help message
'''

    ciphermodule = 'AES'
    aslong = 0

    def usage(code, msg=None):
        if msg:
            print msg
        print usagemsg % {'program': sys.argv[0],
                          'ciphermodule': ciphermodule}
        sys.exit(code)

    try:
        opts, args = getopt.getopt(sys.argv[1:],
                                   'c:l', ['cipher=', 'aslong'])
    except getopt.error, msg:
        usage(1, msg)

    if args:
        usage(1, 'Too many arguments')

    for opt, arg in opts:
        if opt in ('-h', '--help'):
            usage(0)
        elif opt in ('-c', '--cipher'):
            ciphermodule = arg
        elif opt in ('-l', '--aslong'):
            aslong = 1

    # ugly hack to force __import__ to give us the end-path module
    module = __import__('Crypto.Cipher.'+ciphermodule, None, None, ['new'])

    a = AllOrNothing(module)
    print 'Original text:\n=========='
    print __doc__
    print '=========='
    msgblocks = a.digest(__doc__)
    print 'message blocks:'
    for i, blk in map(None, range(len(msgblocks)), msgblocks):
        # base64 adds a trailing newline
        print '    %3d' % i,
        if aslong:
            print bytes_to_long(blk)
        else:
            print base64.encodestring(blk)[:-1]
    #
    # get a new undigest-only object so there's no leakage
    b = AllOrNothing(module)
    text = b.undigest(msgblocks)
    if text == __doc__:
        print 'They match!'
    else:
        print 'They differ!'
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.