# Copyright (C) 2005,2006 Michael Bayer mike_mp@zzzcomputing.com
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""defines the base components of SQL expression trees."""
from sqlalchemy import util,exceptions
from sqlalchemy import types
import string, re, random, sets
__all__ = ['text', 'table', 'column', 'func', 'select', 'update', 'insert', 'delete', 'join', 'and_', 'or_', 'not_', 'between_', 'case', 'cast', 'union', 'union_all', 'null', 'desc', 'asc', 'outerjoin', 'alias', 'subquery', 'literal', 'bindparam', 'exists', 'extract','AbstractDialect', 'ClauseParameters', 'ClauseVisitor', 'Executor', 'Compiled', 'ClauseElement', 'ColumnElement', 'ColumnCollection', 'FromClause', 'TableClause', 'Select', 'Alias', 'CompoundSelect','Join', 'Selectable']
def desc(column):
"""return a descending ORDER BY clause element, e.g.:
order_by = [desc(table1.mycol)]
"""
return _CompoundClause(None, column, "DESC")
def asc(column):
"""return an ascending ORDER BY clause element, e.g.:
order_by = [asc(table1.mycol)]
"""
return _CompoundClause(None, column, "ASC")
def outerjoin(left, right, onclause=None, **kwargs):
"""return an OUTER JOIN clause element.
left - the left side of the join
right - the right side of the join
onclause - optional criterion for the ON clause,
is derived from foreign key relationships otherwise
To chain joins together, use the resulting
Join object's "join()" or "outerjoin()" methods."""
return Join(left, right, onclause, isouter = True, **kwargs)
def join(left, right, onclause=None, **kwargs):
"""return a JOIN clause element (regular inner join).
left - the left side of the join
right - the right side of the join
onclause - optional criterion for the ON clause,
is derived from foreign key relationships otherwise
To chain joins together, use the resulting Join object's
"join()" or "outerjoin()" methods."""
return Join(left, right, onclause, **kwargs)
def select(columns=None, whereclause = None, from_obj = [], **kwargs):
"""returns a SELECT clause element.
this can also be called via the table's select() method.
'columns' is a list of columns and/or selectable items to select columns from
'whereclause' is a text or ClauseElement expression which will form the WHERE clause
'from_obj' is an list of additional "FROM" objects, such as Join objects, which will
extend or override the default "from" objects created from the column list and the
whereclause.
**kwargs - additional parameters for the Select object.
"""
return Select(columns, whereclause = whereclause, from_obj = from_obj, **kwargs)
def subquery(alias, *args, **kwargs):
return Select(*args, **kwargs).alias(alias)
def insert(table, values = None, **kwargs):
"""returns an INSERT clause element.
This can also be called from a table directly via the table's insert() method.
'table' is the table to be inserted into.
'values' is a dictionary which specifies the column specifications of the INSERT,
and is optional. If left as None, the column specifications are determined from the
bind parameters used during the compile phase of the INSERT statement. If the
bind parameters also are None during the compile phase, then the column
specifications will be generated from the full list of table columns.
If both 'values' and compile-time bind parameters are present, the compile-time
bind parameters override the information specified within 'values' on a per-key basis.
The keys within 'values' can be either Column objects or their string identifiers.
Each key may reference one of: a literal data value (i.e. string, number, etc.), a Column object,
or a SELECT statement. If a SELECT statement is specified which references this INSERT
statement's table, the statement will be correlated against the INSERT statement.
"""
return _Insert(table, values, **kwargs)
def update(table, whereclause = None, values = None, **kwargs):
"""returns an UPDATE clause element.
This can also be called from a table directly via the table's update() method.
'table' is the table to be updated.
'whereclause' is a ClauseElement describing the WHERE condition of the UPDATE statement.
'values' is a dictionary which specifies the SET conditions of the UPDATE, and is
optional. If left as None, the SET conditions are determined from the bind parameters
used during the compile phase of the UPDATE statement. If the bind parameters also are
None during the compile phase, then the SET conditions will be generated from the full
list of table columns.
If both 'values' and compile-time bind parameters are present, the compile-time bind
parameters override the information specified within 'values' on a per-key basis.
The keys within 'values' can be either Column objects or their string identifiers. Each
key may reference one of: a literal data value (i.e. string, number, etc.), a Column
object, or a SELECT statement. If a SELECT statement is specified which references this
UPDATE statement's table, the statement will be correlated against the UPDATE statement.
"""
return _Update(table, whereclause, values, **kwargs)
def delete(table, whereclause = None, **kwargs):
"""returns a DELETE clause element.
This can also be called from a table directly via the table's delete() method.
'table' is the table to be updated.
'whereclause' is a ClauseElement describing the WHERE condition of the UPDATE statement.
"""
return _Delete(table, whereclause, **kwargs)
def and_(*clauses):
"""joins a list of clauses together by the AND operator. the & operator can be used as well."""
return _compound_clause('AND', *clauses)
def or_(*clauses):
"""joins a list of clauses together by the OR operator. the | operator can be used as well."""
return _compound_clause('OR', *clauses)
def not_(clause):
"""returns a negation of the given clause, i.e. NOT(clause). the ~ operator can be used as well."""
return clause._negate()
def between(ctest, cleft, cright):
""" returns BETWEEN predicate clause (clausetest BETWEEN clauseleft AND clauseright).
this is better called off a ColumnElement directly, i.e.
column.between(value1, value2).
"""
return _BooleanExpression(ctest, and_(_check_literal(cleft, ctest.type), _check_literal(cright, ctest.type)), 'BETWEEN')
between_ = between
def case(whens, value=None, else_=None):
""" SQL CASE statement -- whens are a sequence of pairs to be translated into "when / then" clauses;
optional [value] for simple case statements, and [else_] for case defaults """
whenlist = [_CompoundClause(None, 'WHEN', c, 'THEN', r) for (c,r) in whens]
if else_:
whenlist.append(_CompoundClause(None, 'ELSE', else_))
cc = _CalculatedClause(None, 'CASE', value, *whenlist + ['END'])
for c in cc.clauses:
c.parens = False
return cc
def cast(clause, totype, **kwargs):
""" returns CAST function CAST(clause AS totype)
Use with a sqlalchemy.types.TypeEngine object, i.e
cast(table.c.unit_price * table.c.qty, Numeric(10,4))
or
cast(table.c.timestamp, DATE)
"""
return _Cast(clause, totype, **kwargs)
def extract(field, expr):
"""return extract(field FROM expr)"""
expr = _BinaryClause(text(field), expr, "FROM")
return func.extract(expr)
def exists(*args, **params):
params['correlate'] = True
s = select(*args, **params)
return _BooleanExpression(_TextClause("EXISTS"), s, None)
def union(*selects, **params):
return _compound_select('UNION', *selects, **params)
def union_all(*selects, **params):
return _compound_select('UNION ALL', *selects, **params)
def alias(*args, **params):
return Alias(*args, **params)
def _check_literal(value, type):
if _is_literal(value):
return literal(value, type)
else:
return value
def literal(value, type=None):
"""returns a literal clause, bound to a bind parameter.
literal clauses are created automatically when used as the right-hand
side of a boolean or math operation against a column object. use this
function when a literal is needed on the left-hand side (and optionally on the right as well).
the optional type parameter is a sqlalchemy.types.TypeEngine object which indicates bind-parameter
and result-set translation for this literal.
"""
return _BindParamClause('literal', value, type=type)
def label(name, obj):
"""returns a _Label object for the given selectable, used in the column list for a select statement."""
return _Label(name, obj)
def column(text, table=None, type=None):
"""returns a textual column clause, relative to a table. this is also the primitive version of
a schema.Column which is a subclass. """
return _ColumnClause(text, table, type)
def table(name, *columns):
"""returns a table clause. this is a primitive version of the schema.Table object, which is a subclass
of this object."""
return TableClause(name, *columns)
def bindparam(key, value=None, type=None, shortname=None):
"""creates a bind parameter clause with the given key.
An optional default value can be specified by the value parameter, and the optional type parameter
is a sqlalchemy.types.TypeEngine object which indicates bind-parameter and result-set translation for
this bind parameter."""
if isinstance(key, _ColumnClause):
return _BindParamClause(key.name, value, type=key.type, shortname=shortname)
else:
return _BindParamClause(key, value, type=type, shortname=shortname)
def text(text, engine=None, *args, **kwargs):
"""creates literal text to be inserted into a query.
When constructing a query from a select(), update(), insert() or delete(), using
plain strings for argument values will usually result in text objects being created
automatically. Use this function when creating textual clauses outside of other
ClauseElement objects, or optionally wherever plain text is to be used.
Arguments include:
text - the text of the SQL statement to be created. use :<param> to specify
bind parameters; they will be compiled to their engine-specific format.
engine - an optional engine to be used for this text query.
bindparams - a list of bindparam() instances which can be used to define the
types and/or initial values for the bind parameters within the textual statement;
the keynames of the bindparams must match those within the text of the statement.
The types will be used for pre-processing on bind values.
typemap - a dictionary mapping the names of columns represented in the SELECT
clause of the textual statement to type objects, which will be used to perform
post-processing on columns within the result set (for textual statements that
produce result sets)."""
return _TextClause(text, engine=engine, *args, **kwargs)
def null():
"""returns a Null object, which compiles to NULL in a sql statement."""
return _Null()
class _FunctionGateway(object):
"""returns a callable based on an attribute name, which then returns a _Function
object with that name."""
def __getattr__(self, name):
return getattr(_FunctionGenerator(), name)
func = _FunctionGateway()
def _compound_clause(keyword, *clauses):
return _CompoundClause(keyword, *clauses)
def _compound_select(keyword, *selects, **kwargs):
return CompoundSelect(keyword, *selects, **kwargs)
def _is_literal(element):
return not isinstance(element, ClauseElement)
def is_column(col):
return isinstance(col, ColumnElement)
class AbstractDialect(object):
"""represents the behavior of a particular database. Used by Compiled objects."""
pass
class ClauseParameters(dict):
"""represents a dictionary/iterator of bind parameter key names/values.
Tracks the original BindParam objects as well as the keys/position of each
parameter, and can return parameters as a dictionary or a list.
Will process parameter values according to the TypeEngine objects present in
the BindParams.
"""
def __init__(self, dialect, positional=None):
super(ClauseParameters, self).__init__(self)
self.dialect=dialect
self.binds = {}
self.positional = positional or []
def set_parameter(self, bindparam, value):
self[bindparam.key] = value
self.binds[bindparam.key] = bindparam
def get_original(self, key):
"""returns the given parameter as it was originally placed in this ClauseParameters object, without any Type conversion"""
return super(ClauseParameters, self).__getitem__(key)
def __getitem__(self, key):
v = super(ClauseParameters, self).__getitem__(key)
if self.binds.has_key(key):
v = self.binds[key].typeprocess(v, self.dialect)
return v
def get_original_dict(self):
return self.copy()
def get_raw_list(self):
return [self[key] for key in self.positional]
def get_raw_dict(self):
d = {}
for k in self:
d[k] = self[k]
return d
class ClauseVisitor(object):
"""Defines the visiting of ClauseElements."""
def visit_column(self, column):pass
def visit_table(self, column):pass
def visit_fromclause(self, fromclause):pass
def visit_bindparam(self, bindparam):pass
def visit_textclause(self, textclause):pass
def visit_compound(self, compound):pass
def visit_compound_select(self, compound):pass
def visit_binary(self, binary):pass
def visit_alias(self, alias):pass
def visit_select(self, select):pass
def visit_join(self, join):pass
def visit_null(self, null):pass
def visit_clauselist(self, list):pass
def visit_calculatedclause(self, calcclause):pass
def visit_function(self, func):pass
def visit_cast(self, cast):pass
def visit_label(self, label):pass
def visit_typeclause(self, typeclause):pass
class Executor(object):
"""represents a 'thing that can produce Compiled objects and execute them'."""
def execute_compiled(self, compiled, parameters, echo=None, **kwargs):
"""execute a Compiled object."""
raise NotImplementedError()
def compiler(self, statement, parameters, **kwargs):
"""return a Compiled object for the given statement and parameters."""
raise NotImplementedError()
class Compiled(ClauseVisitor):
"""represents a compiled SQL expression. the __str__ method of the Compiled object
should produce the actual text of the statement. Compiled objects are specific to the
database library that created them, and also may or may not be specific to the columns
referenced within a particular set of bind parameters. In no case should the Compiled
object be dependent on the actual values of those bind parameters, even though it may
reference those values as defaults."""
def __init__(self, dialect, statement, parameters, engine=None):
"""construct a new Compiled object.
statement - ClauseElement to be compiled
parameters - optional dictionary indicating a set of bind parameters
specified with this Compiled object. These parameters are the "default"
values corresponding to the ClauseElement's _BindParamClauses when the Compiled
is executed. In the case of an INSERT or UPDATE statement, these parameters
will also result in the creation of new _BindParamClause objects for each key
and will also affect the generated column list in an INSERT statement and the SET
clauses of an UPDATE statement. The keys of the parameter dictionary can
either be the string names of columns or _ColumnClause objects.
engine - optional Engine to compile this statement against"""
self.dialect = dialect
self.statement = statement
self.parameters = parameters
self.engine = engine
def compile(self):
self.statement.accept_visitor(self)
self.after_compile()
def __str__(self):
"""returns the string text of the generated SQL statement."""
raise NotImplementedError()
def get_params(self, **params):
"""returns the bind params for this compiled object.
Will start with the default parameters specified when this Compiled object
was first constructed, and will override those values with those sent via
**params, which are key/value pairs. Each key should match one of the
_BindParamClause objects compiled into this object; either the "key" or
"shortname" property of the _BindParamClause.
"""
raise NotImplementedError()
def execute(self, *multiparams, **params):
"""execute this compiled object."""
e = self.engine
if e is None:
raise exceptions.InvalidRequestError("This Compiled object is not bound to any engine.")
return e.execute_compiled(self, *multiparams, **params)
def scalar(self, *multiparams, **params):
"""execute this compiled object and return the result's scalar value."""
return self.execute(*multiparams, **params).scalar()
class ClauseElement(object):
"""base class for elements of a programmatically constructed SQL expression."""
def _get_from_objects(self):
"""returns objects represented in this ClauseElement that should be added to the
FROM list of a query, when this ClauseElement is placed in the column clause of a Select
statement."""
raise NotImplementedError(repr(self))
def _process_from_dict(self, data, asfrom):
"""given a dictionary attached to a Select object, places the appropriate
FROM objects in the dictionary corresponding to this ClauseElement,
and possibly removes or modifies others."""
for f in self._get_from_objects():
data.setdefault(f, f)
if asfrom:
data[self] = self
def compare(self, other):
"""compare this ClauseElement to the given ClauseElement.
Subclasses should override the default behavior, which is a straight
identity comparison."""
return self is other
def accept_visitor(self, visitor):
"""accept a ClauseVisitor and call the appropriate visit_xxx method."""
raise NotImplementedError(repr(self))
def copy_container(self):
"""return a copy of this ClauseElement, iff this ClauseElement contains other ClauseElements.
If this ClauseElement is not a container, it should return self. This is used to
create copies of expression trees that still reference the same "leaf nodes". The
new structure can then be restructured without affecting the original."""
return self
def _find_engine(self):
"""default strategy for locating an engine within the clause element.
relies upon a local engine property, or looks in the "from" objects which
ultimately have to contain Tables or TableClauses. """
try:
if self._engine is not None:
return self._engine
except AttributeError:
pass
for f in self._get_from_objects():
if f is self:
continue
engine = f.engine
if engine is not None:
return engine
else:
return None
engine = property(lambda s: s._find_engine(), doc="attempts to locate a Engine within this ClauseElement structure, or returns None if none found.")
def execute(self, *multiparams, **params):
"""compile and execute this ClauseElement."""
if len(multiparams):
compile_params = multiparams[0]
else:
compile_params = params
return self.compile(engine=self.engine, parameters=compile_params).execute(*multiparams, **params)
def scalar(self, *multiparams, **params):
"""compile and execute this ClauseElement, returning the result's scalar representation."""
return self.execute(*multiparams, **params).scalar()
def compile(self, engine=None, parameters=None, compiler=None, dialect=None):
"""compile this SQL expression.
Uses the given Compiler, or the given AbstractDialect or Engine to create a Compiler. If no compiler
arguments are given, tries to use the underlying Engine this ClauseElement is bound
to to create a Compiler, if any. Finally, if there is no bound Engine, uses an ANSIDialect
to create a default Compiler.
bindparams is a dictionary representing the default bind parameters to be used with
the statement. if the bindparams is a list, it is assumed to be a list of dictionaries
and the first dictionary in the list is used with which to compile against.
The bind parameters can in some cases determine the output of the compilation, such as for UPDATE
and INSERT statements the bind parameters that are present determine the SET and VALUES clause of
those statements.
"""
if (isinstance(parameters, list) or isinstance(parameters, tuple)):
parameters = parameters[0]
if compiler is None:
if dialect is not None:
compiler = dialect.compiler(self, parameters)
elif engine is not None:
compiler = engine.compiler(self, parameters)
elif self.engine is not None:
compiler = self.engine.compiler(self, parameters)
if compiler is None:
import sqlalchemy.ansisql as ansisql
compiler = ansisql.ANSIDialect().compiler(self, parameters=parameters)
compiler.compile()
return compiler
def __str__(self):
return str(self.compile())
def __and__(self, other):
return and_(self, other)
def __or__(self, other):
return or_(self, other)
def __invert__(self):
return self._negate()
def _negate(self):
self.parens=True
return _BooleanExpression(_TextClause("NOT"), self, None)
class _CompareMixin(object):
"""defines comparison operations for ClauseElements."""
def __lt__(self, other):
return self._compare('<', other)
def __le__(self, other):
return self._compare('<=', other)
def __eq__(self, other):
return self._compare('=', other)
def __ne__(self, other):
return self._compare('!=', other)
def __gt__(self, other):
return self._compare('>', other)
def __ge__(self, other):
return self._compare('>=', other)
def like(self, other):
return self._compare('LIKE', other)
def in_(self, *other):
if len(other) == 0:
return self.__eq__(None)
elif len(other) == 1 and not hasattr(other[0], '_selectable'):
return self.__eq__(other[0])
elif _is_literal(other[0]):
return self._compare('IN', ClauseList(parens=True, *[self._bind_param(o) for o in other]), negate='NOT IN')
else:
# assume *other is a list of selects.
# so put them in a UNION. if theres only one, you just get one SELECT
# statement out of it.
return self._compare('IN', union(parens=True, *other), negate='NOT IN')
def startswith(self, other):
return self._compare('LIKE', other + "%")
def endswith(self, other):
return self._compare('LIKE', "%" + other)
def label(self, name):
return _Label(name, self, self.type)
def distinct(self):
return _CompoundClause(None,"DISTINCT", self)
def between(self, cleft, cright):
return _BooleanExpression(self, and_(self._check_literal(cleft), self._check_literal(cright)), 'BETWEEN')
def op(self, operator):
return lambda other: self._compare(operator, other)
# and here come the math operators:
def __add__(self, other):
return self._operate('+', other)
def __sub__(self, other):
return self._operate('-', other)
def __mul__(self, other):
return self._operate('*', other)
def __div__(self, other):
return self._operate('/', other)
def __mod__(self, other):
return self._operate('%', other)
def __truediv__(self, other):
return self._operate('/', other)
def _bind_param(self, obj):
return _BindParamClause('literal', obj, shortname=None, type=self.type)
def _check_literal(self, other):
if _is_literal(other):
return self._bind_param(other)
else:
return other
def _compare(self, operator, obj, negate=None):
if obj is None or isinstance(obj, _Null):
if operator == '=':
return _BooleanExpression(self._compare_self(), null(), 'IS', negate='IS NOT')
elif operator == '!=':
return _BooleanExpression(self._compare_self(), null(), 'IS NOT', negate='IS')
else:
raise exceptions.ArgumentError("Only '='/'!=' operators can be used with NULL")
else:
obj = self._check_literal(obj)
return _BooleanExpression(self._compare_self(), obj, operator, type=self._compare_type(obj), negate=negate)
def _operate(self, operator, obj):
if _is_literal(obj):
obj = self._bind_param(obj)
return _BinaryExpression(self._compare_self(), obj, operator, type=self._compare_type(obj))
def _compare_self(self):
"""allows ColumnImpl to return its Column object for usage in ClauseElements, all others to
just return self"""
return self
def _compare_type(self, obj):
"""allows subclasses to override the type used in constructing _BinaryClause objects. Default return
value is the type of the given object."""
return obj.type
class Selectable(ClauseElement):
"""represents a column list-holding object."""
def _selectable(self):
return self
def accept_visitor(self, visitor):
raise NotImplementedError(repr(self))
def select(self, whereclauses = None, **params):
return select([self], whereclauses, **params)
def _group_parenthesized(self):
"""indicates if this Selectable requires parenthesis when grouped into a compound
statement"""
return True
class ColumnElement(Selectable, _CompareMixin):
"""represents a column element within the list of a Selectable's columns.
A ColumnElement can either be directly associated with a TableClause, or
a free-standing textual column with no table, or is a "proxy" column, indicating
it is placed on a Selectable such as an Alias or Select statement and ultimately corresponds
to a TableClause-attached column (or in the case of a CompositeSelect, a proxy ColumnElement
may correspond to several TableClause-attached columns)."""
primary_key = property(lambda self:getattr(self, '_primary_key', False), doc="primary key flag. indicates if this Column represents part or whole of a primary key.")
foreign_keys = property(lambda self:getattr(self, '_foreign_keys', []), doc="foreign key accessor. points to a ForeignKey object which represents a Foreign Key placed on this column's ultimate ancestor.")
columns = property(lambda self:[self], doc="Columns accessor which just returns self, to provide compatibility with Selectable objects.")
def _one_fkey(self):
if len(self._foreign_keys):
return list(self._foreign_keys)[0]
else:
return None
foreign_key = property(_one_fkey)
def _get_orig_set(self):
try:
return self.__orig_set
except AttributeError:
self.__orig_set = util.Set([self])
return self.__orig_set
def _set_orig_set(self, s):
if len(s) == 0:
s.add(self)
self.__orig_set = s
orig_set = property(_get_orig_set, _set_orig_set,doc="""a Set containing TableClause-bound, non-proxied ColumnElements for which this ColumnElement is a proxy. In all cases except for a column proxied from a Union (i.e. CompoundSelect), this set will be just one element.""")
def shares_lineage(self, othercolumn):
"""returns True if the given ColumnElement has a common ancestor to this ColumnElement."""
for c in self.orig_set:
if c in othercolumn.orig_set:
return True
else:
return False
def _make_proxy(self, selectable, name=None):
"""creates a new ColumnElement representing this ColumnElement as it appears in the select list
of a descending selectable. The default implementation returns a _ColumnClause if a name is given,
else just returns self."""
if name is not None:
co = _ColumnClause(name, selectable)
co.orig_set = self.orig_set
selectable.columns[name]= co
return co
else:
return self
class ColumnCollection(util.OrderedProperties):
"""an ordered dictionary that stores a list of ColumnElement instances.
overrides the __eq__() method to produce SQL clauses between sets of
correlated columns."""
def add(self, column):
"""add a column to this collection.
the key attribute of the column will be used as the hash key for this
dictionary."""
self[column.key] = column
def __eq__(self, other):
l = []
for c in other:
for local in self:
if c.shares_lineage(local):
l.append(c==local)
return and_(*l)
class FromClause(Selectable):
"""represents an element that can be used within the FROM clause of a SELECT statement."""
def __init__(self, name=None):
self.name = name
def _get_from_objects(self):
# this could also be [self], at the moment it doesnt matter to the Select object
return []
def default_order_by(self):
return [self.oid_column]
def accept_visitor(self, visitor):
visitor.visit_fromclause(self)
def count(self, whereclause=None, **params):
if len(self.primary_key):
col = list(self.primary_key)[0]
else:
col = list(self.columns)[0]
return select([func.count(col).label('tbl_row_count')], whereclause, from_obj=[self], **params)
def join(self, right, *args, **kwargs):
return Join(self, right, *args, **kwargs)
def outerjoin(self, right, *args, **kwargs):
return Join(self, right, isouter=True, *args, **kwargs)
def alias(self, name=None):
return Alias(self, name)
def named_with_column(self):
"""True if the name of this FromClause may be prepended to a column in a generated SQL statement"""
return False
def _locate_oid_column(self):
"""subclasses override this to return an appropriate OID column"""
return None
def _get_oid_column(self):
if not hasattr(self, '_oid_column'):
self._oid_column = self._locate_oid_column()
return self._oid_column
def corresponding_column(self, column, raiseerr=True, keys_ok=False):
"""given a ColumnElement, return the ColumnElement object from this
Selectable which corresponds to that original Column via a proxy relationship."""
for c in column.orig_set:
try:
return self.original_columns[c]
except KeyError:
pass
else:
if keys_ok:
try:
return self.c[column.key]
except KeyError:
pass
if not raiseerr:
return None
else:
raise exceptions.InvalidRequestError("Given column '%s', attached to table '%s', failed to locate a corresponding column from table '%s'" % (str(column), str(column.table), self.name))
def _get_exported_attribute(self, name):
try:
return getattr(self, name)
except AttributeError:
self._export_columns()
return getattr(self, name)
columns = property(lambda s:s._get_exported_attribute('_columns'))
c = property(lambda s:s._get_exported_attribute('_columns'))
primary_key = property(lambda s:s._get_exported_attribute('_primary_key'))
foreign_keys = property(lambda s:s._get_exported_attribute('_foreign_keys'))
original_columns = property(lambda s:s._get_exported_attribute('_orig_cols'), doc="a dictionary mapping an original Table-bound column to a proxied column in this FromClause.")
oid_column = property(_get_oid_column)
def _export_columns(self):
"""initialize column collections.
the collections include the primary key, foreign keys, list of all columns, as well as
the "_orig_cols" collection which is a dictionary used to match Table-bound columns
to proxied columns in this FromClause. The columns in each collection are "proxied" from
the columns returned by the _exportable_columns method, where a "proxied" column maintains
most or all of the properties of its original column, except its parent Selectable is this FromClause.
"""
if hasattr(self, '_columns'):
# TODO: put a mutex here ? this is a key place for threading probs
return
self._columns = ColumnCollection()
self._primary_key = ColumnCollection()
self._foreign_keys = util.Set()
self._orig_cols = {}
export = self._exportable_columns()
for column in export:
try:
s = column._selectable()
except AttributeError:
continue
for co in s.columns:
cp = self._proxy_column(co)
for ci in cp.orig_set:
self._orig_cols[ci] = cp
if self.oid_column is not None:
for ci in self.oid_column.orig_set:
self._orig_cols[ci] = self.oid_column
def _exportable_columns(self):
return []
def _proxy_column(self, column):
return column._make_proxy(self)
class _BindParamClause(ClauseElement, _CompareMixin):
"""represents a bind parameter. public constructor is the bindparam() function."""
def __init__(self, key, value, shortname=None, type=None):
"""construct a _BindParamClause.
key - the key for this bind param. will be used in the generated SQL statement
for dialects that use named parameters. this value may be modified when part of a
compilation operation, if other _BindParamClause objects exist with the same key, or if
its length is too long and truncation is required.
value - initial value for this bind param. This value may be overridden by the
dictionary of parameters sent to statement compilation/execution.
shortname - defaults to the key, a 'short name' that will also identify this
bind parameter, similar to an alias. the bind parameter keys sent to a statement
compilation or compiled execution may match either the key or the shortname of the
corresponding _BindParamClause objects.
type - a TypeEngine object that will be used to pre-process the value corresponding
to this _BindParamClause at execution time."""
self.key = key
self.value = value
self.shortname = shortname or key
self.type = sqltypes.to_instance(type)
def accept_visitor(self, visitor):
visitor.visit_bindparam(self)
def _get_from_objects(self):
return []
def copy_container(self):
return _BindParamClause(self.key, self.value, self.shortname, self.type)
def typeprocess(self, value, dialect):
return self.type.dialect_impl(dialect).convert_bind_param(value, dialect)
def compare(self, other):
"""compares this _BindParamClause to the given clause.
Since compare() is meant to compare statement syntax, this method
returns True if the two _BindParamClauses have just the same type."""
return isinstance(other, _BindParamClause) and other.type.__class__ == self.type.__class__
def _make_proxy(self, selectable, name = None):
return self
# return self.obj._make_proxy(selectable, name=self.name)
class _TypeClause(ClauseElement):
"""handles a type keyword in a SQL statement. used by the Case statement."""
def __init__(self, type):
self.type = type
def accept_visitor(self, visitor):
visitor.visit_typeclause(self)
def _get_from_objects(self):
return []
class _TextClause(ClauseElement):
"""represents literal a SQL text fragment. public constructor is the
text() function.
"""
def __init__(self, text = "", engine=None, bindparams=None, typemap=None):
self.parens = False
self._engine = engine
self.bindparams = {}
self.typemap = typemap
if typemap is not None:
for key in typemap.keys():
typemap[key] = sqltypes.to_instance(typemap[key])
def repl(m):
self.bindparams[m.group(1)] = bindparam(m.group(1))
return ":%s" % m.group(1)
# scan the string and search for bind parameter names, add them
# to the list of bindparams
self.text = re.compile(r'(?<!:):([\w_]+)', re.S).sub(repl, text)
if bindparams is not None:
for b in bindparams:
self.bindparams[b.key] = b
columns = property(lambda s:[])
def accept_visitor(self, visitor):
for item in self.bindparams.values():
item.accept_visitor(visitor)
visitor.visit_textclause(self)
def _get_from_objects(self):
return []
class _Null(ColumnElement):
"""represents the NULL keyword in a SQL statement. public contstructor is the
null() function."""
def __init__(self):
self.type = sqltypes.NULLTYPE
def accept_visitor(self, visitor):
visitor.visit_null(self)
def _get_from_objects(self):
return []
class ClauseList(ClauseElement):
"""describes a list of clauses. by default, is comma-separated,
such as a column listing."""
def __init__(self, *clauses, **kwargs):
self.clauses = []
for c in clauses:
if c is None: continue
self.append(c)
self.parens = kwargs.get('parens', False)
def copy_container(self):
clauses = [clause.copy_container() for clause in self.clauses]
return ClauseList(parens=self.parens, *clauses)
def append(self, clause):
if _is_literal(clause):
clause = _TextClause(str(clause))
self.clauses.append(clause)
def accept_visitor(self, visitor):
for c in self.clauses:
c.accept_visitor(visitor)
visitor.visit_clauselist(self)
def _get_from_objects(self):
f = []
for c in self.clauses:
f += c._get_from_objects()
return f
def compare(self, other):
"""compares this ClauseList to the given ClauseList, including
a comparison of all the clause items."""
if isinstance(other, ClauseList) and len(self.clauses) == len(other.clauses):
for i in range(0, len(self.clauses)):
if not self.clauses[i].compare(other.clauses[i]):
return False
else:
return True
else:
return False
class _CompoundClause(ClauseList):
"""represents a list of clauses joined by an operator, such as AND or OR.
extends ClauseList to add the operator as well as a from_objects accessor to
help determine FROM objects in a SELECT statement."""
def __init__(self, operator, *clauses, **kwargs):
ClauseList.__init__(self, *clauses, **kwargs)
self.operator = operator
def copy_container(self):
clauses = [clause.copy_container() for clause in self.clauses]
return _CompoundClause(self.operator, *clauses)
def append(self, clause):
if isinstance(clause, _CompoundClause):
clause.parens = True
ClauseList.append(self, clause)
def accept_visitor(self, visitor):
for c in self.clauses:
c.accept_visitor(visitor)
visitor.visit_compound(self)
def _get_from_objects(self):
f = []
for c in self.clauses:
f += c._get_from_objects()
return f
def compare(self, other):
"""compares this _CompoundClause to the given item.
In addition to the regular comparison, has the special case that it
returns True if this _CompoundClause has only one item, and that
item matches the given item."""
if not isinstance(other, _CompoundClause):
if len(self.clauses) == 1:
return self.clauses[0].compare(other)
if ClauseList.compare(self, other):
return self.operator == other.operator
else:
return False
class _CalculatedClause(ClauseList, ColumnElement):
""" describes a calculated SQL expression that has a type, like CASE. extends ColumnElement to
provide column-level comparison operators. """
def __init__(self, name, *clauses, **kwargs):
self.name = name
self.type = sqltypes.to_instance(kwargs.get('type', None))
self._engine = kwargs.get('engine', None)
ClauseList.__init__(self, *clauses)
key = property(lambda self:self.name or "_calc_")
def _process_from_dict(self, data, asfrom):
super(_CalculatedClause, self)._process_from_dict(data, asfrom)
# this helps a Select object get the engine from us
if asfrom:
data.setdefault(self, self)
def copy_container(self):
clauses = [clause.copy_container() for clause in self.clauses]
return _CalculatedClause(type=self.type, engine=self._engine, *clauses)
def accept_visitor(self, visitor):
for c in self.clauses:
c.accept_visitor(visitor)
visitor.visit_calculatedclause(self)
def _bind_param(self, obj):
return _BindParamClause(self.name, obj, type=self.type)
def select(self):
return select([self])
def scalar(self):
return select([self]).scalar()
def execute(self):
return select([self]).execute()
def _compare_type(self, obj):
return self.type
class _Function(_CalculatedClause, FromClause):
"""describes a SQL function. extends _CalculatedClause turn the "clauselist" into function
arguments, also adds a "packagenames" argument"""
def __init__(self, name, *clauses, **kwargs):
self.name = name
self.type = sqltypes.to_instance(kwargs.get('type', None))
self.packagenames = kwargs.get('packagenames', None) or []
self._engine = kwargs.get('engine', None)
ClauseList.__init__(self, parens=True, *clauses)
key = property(lambda self:self.name)
def append(self, clause):
if _is_literal(clause):
if clause is None:
clause = null()
else:
clause = _BindParamClause(self.name, clause, shortname=self.name, type=None)
self.clauses.append(clause)
def copy_container(self):
clauses = [clause.copy_container() for clause in self.clauses]
return _Function(self.name, type=self.type, packagenames=self.packagenames, engine=self._engine, *clauses)
def accept_visitor(self, visitor):
for c in self.clauses:
c.accept_visitor(visitor)
visitor.visit_function(self)
class _Cast(ColumnElement):
def __init__(self, clause, totype, **kwargs):
if not hasattr(clause, 'label'):
clause = literal(clause)
self.type = sqltypes.to_instance(totype)
self.clause = clause
self.typeclause = _TypeClause(self.type)
def accept_visitor(self, visitor):
self.clause.accept_visitor(visitor)
self.typeclause.accept_visitor(visitor)
visitor.visit_cast(self)
def _get_from_objects(self):
return self.clause._get_from_objects()
def _make_proxy(self, selectable, name=None):
if name is not None:
co = _ColumnClause(name, selectable, type=self.type)
co.orig_set = self.orig_set
selectable.columns[name]= co
return co
else:
return self
class _FunctionGenerator(object):
"""generates _Function objects based on getattr calls"""
def __init__(self, engine=None):
self.__engine = engine
self.__names = []
def __getattr__(self, name):
self.__names.append(name)
return self
def __call__(self, *c, **kwargs):
kwargs.setdefault('engine', self.__engine)
return _Function(self.__names[-1], packagenames=self.__names[0:-1], *c, **kwargs)
class _BinaryClause(ClauseElement):
"""represents two clauses with an operator in between"""
def __init__(self, left, right, operator, type=None):
self.left = left
self.right = right
self.operator = operator
self.type = sqltypes.to_instance(type)
self.parens = False
if isinstance(self.left, _BinaryClause) or hasattr(self.left, '_selectable'):
self.left.parens = True
if isinstance(self.right, _BinaryClause) or hasattr(self.right, '_selectable'):
self.right.parens = True
def copy_container(self):
return self.__class__(self.left.copy_container(), self.right.copy_container(), self.operator)
def _get_from_objects(self):
return self.left._get_from_objects() + self.right._get_from_objects()
def accept_visitor(self, visitor):
self.left.accept_visitor(visitor)
self.right.accept_visitor(visitor)
visitor.visit_binary(self)
def swap(self):
c = self.left
self.left = self.right
self.right = c
def compare(self, other):
"""compares this _BinaryClause against the given _BinaryClause."""
return (
isinstance(other, _BinaryClause) and self.operator == other.operator and
self.left.compare(other.left) and self.right.compare(other.right)
)
class _BooleanExpression(_BinaryClause):
"""represents a boolean expression, which is only useable in WHERE criterion."""
def __init__(self, *args, **kwargs):
self.negate = kwargs.pop('negate', None)
super(_BooleanExpression, self).__init__(*args, **kwargs)
def _negate(self):
if self.negate is not None:
return _BooleanExpression(self.left, self.right, self.negate, negate=self.operator, type=self.type)
else:
return super(_BooleanExpression, self)._negate()
class _BinaryExpression(_BinaryClause, ColumnElement):
"""represents a binary expression, which can be in a WHERE criterion or in the column list
of a SELECT. By adding "ColumnElement" to its inherited list, it becomes a Selectable
unit which can be placed in the column list of a SELECT."""
pass
class Join(FromClause):
def __init__(self, left, right, onclause=None, isouter = False):
self.left = left._selectable()
self.right = right._selectable()
if onclause is None:
self.onclause = self._match_primaries(self.left, self.right)
else:
self.onclause = onclause
self.isouter = isouter
name = property(lambda s: "Join object on " + s.left.name + " " + s.right.name)
def _locate_oid_column(self):
return self.left.oid_column
def _exportable_columns(self):
return [c for c in self.left.columns] + [c for c in self.right.columns]
def _proxy_column(self, column):
self._columns[column._label] = column
if column.primary_key:
self._primary_key.add(column)
for f in column.foreign_keys:
self._foreign_keys.add(f)
return column
def _match_primaries(self, primary, secondary):
crit = []
constraints = util.Set()
for fk in secondary.foreign_keys:
if fk.references(primary):
crit.append(primary.corresponding_column(fk.column) == fk.parent)
constraints.add(fk.constraint)
self.foreignkey = fk.parent
if primary is not secondary:
for fk in primary.foreign_keys:
if fk.references(secondary):
crit.append(secondary.corresponding_column(fk.column) == fk.parent)
constraints.add(fk.constraint)
self.foreignkey = fk.parent
if len(crit) == 0:
raise exceptions.ArgumentError("Cant find any foreign key relationships between '%s' and '%s'" % (primary.name, secondary.name))
elif len(constraints) > 1:
raise exceptions.ArgumentError("Cant determine join between '%s' and '%s'; tables have more than one foreign key constraint relationship between them. Please specify the 'onclause' of this join explicitly." % (primary.name, secondary.name))
elif len(crit) == 1:
return (crit[0])
else:
return and_(*crit)
def _group_parenthesized(self):
return True
def select(self, whereclauses = None, **params):
return select([self.left, self.right], whereclauses, from_obj=[self], **params)
def accept_visitor(self, visitor):
self.left.accept_visitor(visitor)
self.right.accept_visitor(visitor)
self.onclause.accept_visitor(visitor)
visitor.visit_join(self)
engine = property(lambda s:s.left.engine or s.right.engine)
class JoinMarker(FromClause):
def __init__(self, join):
FromClause.__init__(self)
self.join = join
def _exportable_columns(self):
return []
def alias(self, name=None):
"""creates a Select out of this Join clause and returns an Alias of it. The Select is not correlating."""
return self.select(use_labels=True, correlate=False).alias(name)
def _process_from_dict(self, data, asfrom):
for f in self.onclause._get_from_objects():
data[f] = f
for f in self.left._get_from_objects() + self.right._get_from_objects():
# mark the object as a "blank" "from" that wont be printed
data[f] = Join.JoinMarker(self)
# a JOIN always impacts the final FROM list of a select statement
data[self] = self
def _get_from_objects(self):
return [self] + self.onclause._get_from_objects() + self.left._get_from_objects() + self.right._get_from_objects()
class Alias(FromClause):
def __init__(self, selectable, alias = None):
baseselectable = selectable
while isinstance(baseselectable, Alias):
baseselectable = baseselectable.selectable
self.original = baseselectable
self.selectable = selectable
if alias is None:
if self.original.named_with_column():
alias = getattr(self.original, 'name', None)
if alias is None:
alias = 'anon'
elif len(alias) > 15:
alias = alias[0:15]
alias = alias + "_" + hex(random.randint(0, 65535))[2:]
self.name = alias
self.case_sensitive = getattr(baseselectable, "case_sensitive", alias.lower() != alias)
def _locate_oid_column(self):
if self.selectable.oid_column is not None:
return self.selectable.oid_column._make_proxy(self)
else:
return None
def named_with_column(self):
return True
def _exportable_columns(self):
#return self.selectable._exportable_columns()
return self.selectable.columns
def accept_visitor(self, visitor):
self.selectable.accept_visitor(visitor)
visitor.visit_alias(self)
def _get_from_objects(self):
return [self]
def _group_parenthesized(self):
return False
engine = property(lambda s: s.selectable.engine)
class _Label(ColumnElement):
def __init__(self, name, obj, type=None):
self.name = name
while isinstance(obj, _Label):
obj = obj.obj
self.obj = obj
self.case_sensitive = getattr(obj, "case_sensitive", name.lower() != name)
self.type = sqltypes.to_instance(type)
obj.parens=True
key = property(lambda s: s.name)
_label = property(lambda s: s.name)
orig_set = property(lambda s:s.obj.orig_set)
def accept_visitor(self, visitor):
self.obj.accept_visitor(visitor)
visitor.visit_label(self)
def _get_from_objects(self):
return self.obj._get_from_objects()
def _make_proxy(self, selectable, name = None):
return self.obj._make_proxy(selectable, name=self.name)
legal_characters = util.Set(string.ascii_letters + string.digits + '_')
class _ColumnClause(ColumnElement):
"""represents a textual column clause in a SQL statement. May or may not
be bound to an underlying Selectable."""
def __init__(self, text, selectable=None, type=None, _is_oid=False):
self.key = self.name = text
self.table = selectable
self.type = sqltypes.to_instance(type)
self._is_oid = _is_oid
self.__label = None
def _get_label(self):
if self.__label is None:
if self.table is not None and self.table.named_with_column():
self.__label = self.table.name + "_" + self.name
if self.table.c.has_key(self.__label) or len(self.__label) >= 30:
self.__label = self.__label[0:24] + "_" + hex(random.randint(0, 65535))[2:]
else:
self.__label = self.name
self.__label = "".join([x for x in self.__label if x in legal_characters])
return self.__label
_label = property(_get_label)
def accept_visitor(self, visitor):
visitor.visit_column(self)
def to_selectable(self, selectable):
"""given a Selectable, returns this column's equivalent in that Selectable, if any.
for example, this could translate the column "name" from a Table object
to an Alias of a Select off of that Table object."""
return selectable.corresponding_column(self.original, False)
def _get_from_objects(self):
if self.table is not None:
return [self.table]
else:
return []
def _bind_param(self, obj):
return _BindParamClause(self._label, obj, shortname = self.name, type=self.type)
def _make_proxy(self, selectable, name = None):
c = _ColumnClause(name or self.name, selectable, _is_oid=self._is_oid, type=self.type)
c.orig_set = self.orig_set
if not self._is_oid:
selectable.columns[c.name] = c
return c
def _compare_type(self, obj):
return self.type
def _group_parenthesized(self):
return False
class TableClause(FromClause):
def __init__(self, name, *columns):
super(TableClause, self).__init__(name)
self.name = self.fullname = name
self._columns = ColumnCollection()
self._foreign_keys = util.OrderedSet()
self._primary_key = ColumnCollection()
for c in columns:
self.append_column(c)
self._oid_column = _ColumnClause('oid', self, _is_oid=True)
def named_with_column(self):
return True
def append_column(self, c):
self._columns[c.name] = c
c.table = self
def _locate_oid_column(self):
return self._oid_column
def _orig_columns(self):
try:
return self._orig_cols
except AttributeError:
self._orig_cols= {}
for c in self.columns:
for ci in c.orig_set:
self._orig_cols[ci] = c
return self._orig_cols
original_columns = property(_orig_columns)
def accept_visitor(self, visitor):
visitor.visit_table(self)
def _exportable_columns(self):
raise NotImplementedError()
def _group_parenthesized(self):
return False
def _process_from_dict(self, data, asfrom):
for f in self._get_from_objects():
data.setdefault(f, f)
if asfrom:
data[self] = self
def count(self, whereclause=None, **params):
if len(self.primary_key):
col = list(self.primary_key)[0]
else:
col = list(self.columns)[0]
return select([func.count(col).label('tbl_row_count')], whereclause, from_obj=[self], **params)
def join(self, right, *args, **kwargs):
return Join(self, right, *args, **kwargs)
def outerjoin(self, right, *args, **kwargs):
return Join(self, right, isouter = True, *args, **kwargs)
def alias(self, name=None):
return Alias(self, name)
def select(self, whereclause = None, **params):
return select([self], whereclause, **params)
def insert(self, values = None):
return insert(self, values=values)
def update(self, whereclause = None, values = None):
return update(self, whereclause, values)
def delete(self, whereclause = None):
return delete(self, whereclause)
def _get_from_objects(self):
return [self]
class _SelectBaseMixin(object):
"""base class for Select and CompoundSelects"""
def order_by(self, *clauses):
if len(clauses) == 1 and clauses[0] is None:
self.order_by_clause = ClauseList()
elif getattr(self, 'order_by_clause', None):
self.order_by_clause = ClauseList(*(list(self.order_by_clause.clauses) + list(clauses)))
else:
self.order_by_clause = ClauseList(*clauses)
def group_by(self, *clauses):
if len(clauses) == 1 and clauses[0] is None:
self.group_by_clause = ClauseList()
elif getattr(self, 'group_by_clause', None):
self.group_by_clause = ClauseList(*(list(clauses)+list(self.group_by_clause.clauses)))
else:
self.group_by_clause = ClauseList(*clauses)
def select(self, whereclauses = None, **params):
return select([self], whereclauses, **params)
def _get_from_objects(self):
if self.is_where or self._scalar:
return []
else:
return [self]
class CompoundSelect(_SelectBaseMixin, FromClause):
def __init__(self, keyword, *selects, **kwargs):
_SelectBaseMixin.__init__(self)
self.keyword = keyword
self.selects = selects
self.use_labels = kwargs.pop('use_labels', False)
self.parens = kwargs.pop('parens', False)
self.correlate = kwargs.pop('correlate', False)
self.for_update = kwargs.pop('for_update', False)
self.nowait = kwargs.pop('nowait', False)
self.limit = kwargs.get('limit', None)
self.offset = kwargs.get('offset', None)
for s in self.selects:
s.group_by(None)
s.order_by(None)
self.group_by(*kwargs.get('group_by', [None]))
self.order_by(*kwargs.get('order_by', [None]))
self._col_map = {}
name = property(lambda s:s.keyword + " statement")
def _locate_oid_column(self):
return self.selects[0].oid_column
def _exportable_columns(self):
for s in self.selects:
for c in s.c:
yield c
def _proxy_column(self, column):
if self.use_labels:
col = column._make_proxy(self, name=column._label)
else:
col = column._make_proxy(self, name=column.name)
try:
colset = self._col_map[col.name]
except KeyError:
colset = util.Set()
self._col_map[col.name] = colset
[colset.add(c) for c in col.orig_set]
col.orig_set = colset
return col
def accept_visitor(self, visitor):
self.order_by_clause.accept_visitor(visitor)
self.group_by_clause.accept_visitor(visitor)
for s in self.selects:
s.accept_visitor(visitor)
visitor.visit_compound_select(self)
def _find_engine(self):
for s in self.selects:
e = s._find_engine()
if e:
return e
else:
return None
class Select(_SelectBaseMixin, FromClause):
"""represents a SELECT statement, with appendable clauses, as well as
the ability to execute itself and return a result set."""
def __init__(self, columns=None, whereclause = None, from_obj = [], order_by = None, group_by=None, having=None, use_labels = False, distinct=False, for_update=False, nowait=False, engine=None, limit=None, offset=None, scalar=False, correlate=True):
_SelectBaseMixin.__init__(self)
self._froms = util.OrderedDict()
self.use_labels = use_labels
self.whereclause = None
self.having = None
self._engine = engine
self.limit = limit
self.offset = offset
self.for_update = for_update
self.nowait = nowait
# indicates that this select statement should not expand its columns
# into the column clause of an enclosing select, and should instead
# act like a single scalar column
self._scalar = scalar
# indicates if this select statement, as a subquery, should correlate
# its FROM clause to that of an enclosing select statement
self.correlate = correlate
# indicates if this select statement is a subquery inside another query
self.issubquery = False
# indicates if this select statement is a subquery as a criterion
# inside of a WHERE clause
self.is_where = False
self.distinct = distinct
self._text = None
self._raw_columns = []
self._correlated = None
self._correlator = Select._CorrelatedVisitor(self, False)
self._wherecorrelator = Select._CorrelatedVisitor(self, True)
self.group_by(*(group_by or [None]))
self.order_by(*(order_by or [None]))
if columns is not None:
for c in columns:
self.append_column(c)
if whereclause is not None:
self.append_whereclause(whereclause)
if having is not None:
self.append_having(having)
for f in from_obj:
self.append_from(f)
def _foo(self):
raise "this is a temporary assertion while we refactor SQL to not call 'name' on non-table Selectables"
name = property(lambda s:s._foo()) #"SELECT statement")
class _CorrelatedVisitor(ClauseVisitor):
"""visits a clause, locates any Select clauses, and tells them that they should
correlate their FROM list to that of their parent."""
def __init__(self, select, is_where):
self.select = select
self.is_where = is_where
def visit_compound_select(self, cs):
self.visit_select(cs)
for s in cs.selects:
s.parens = False
def visit_column(self, c):pass
def visit_table(self, c):pass
def visit_select(self, select):
if select is self.select:
return
select.is_where = self.is_where
select.issubquery = True
select.parens = True
if not select.correlate:
return
if getattr(select, '_correlated', None) is None:
select._correlated = self.select._froms
def append_column(self, column):
if _is_literal(column):
column = _ColumnClause(str(column), self)
self._raw_columns.append(column)
# if the column is a Select statement itself,
# accept visitor
column.accept_visitor(self._correlator)
# visit the FROM objects of the column looking for more Selects
for f in column._get_from_objects():
f.accept_visitor(self._correlator)
column._process_from_dict(self._froms, False)
def _exportable_columns(self):
return self._raw_columns
def _proxy_column(self, column):
if self.use_labels:
return column._make_proxy(self, name=column._label)
else:
return column._make_proxy(self, name=column.name)
def append_whereclause(self, whereclause):
self._append_condition('whereclause', whereclause)
def append_having(self, having):
self._append_condition('having', having)
def _append_condition(self, attribute, condition):
if type(condition) == str:
condition = _TextClause(condition)
condition.accept_visitor(self._wherecorrelator)
condition._process_from_dict(self._froms, False)
if getattr(self, attribute) is not None:
setattr(self, attribute, and_(getattr(self, attribute), condition))
else:
setattr(self, attribute, condition)
def clear_from(self, from_obj):
self._froms[from_obj] = FromClause()
def append_from(self, fromclause):
if type(fromclause) == str:
fromclause = _TextClause(fromclause)
fromclause.accept_visitor(self._correlator)
fromclause._process_from_dict(self._froms, True)
def _locate_oid_column(self):
for f in self._froms.values():
if f is self:
# we might be in our own _froms list if a column with us as the parent is attached,
# which includes textual columns.
continue
oid = f.oid_column
if oid is not None:
return oid
else:
return None
def _get_froms(self):
return [f for f in self._froms.values() if f is not self and (self._correlated is None or not self._correlated.has_key(f))]
froms = property(lambda s: s._get_froms())
def accept_visitor(self, visitor):
# TODO: add contextual visit_ methods
# visit_select_whereclause, visit_select_froms, visit_select_orderby, etc.
# which will allow the compiler to set contextual flags before traversing
# into each thing.
for f in self._get_froms():
f.accept_visitor(visitor)
if self.whereclause is not None:
self.whereclause.accept_visitor(visitor)
if self.having is not None:
self.having.accept_visitor(visitor)
self.order_by_clause.accept_visitor(visitor)
self.group_by_clause.accept_visitor(visitor)
visitor.visit_select(self)
def union(self, other, **kwargs):
return union(self, other, **kwargs)
def union_all(self, other, **kwargs):
return union_all(self, other, **kwargs)
def _find_engine(self):
"""tries to return a Engine, either explicitly set in this object, or searched
within the from clauses for one"""
if self._engine is not None:
return self._engine
for f in self._froms.values():
if f is self:
continue
e = f.engine
if e is not None:
self._engine = e
return e
# look through the columns (largely synomous with looking
# through the FROMs except in the case of _CalculatedClause/_Function)
for cc in self._raw_columns:
for c in cc.columns:
if getattr(c, 'table', None) is self:
continue
e = c.engine
if e is not None:
self._engine = e
return e
return None
class _UpdateBase(ClauseElement):
"""forms the base for INSERT, UPDATE, and DELETE statements."""
def _process_colparams(self, parameters):
"""receives the "values" of an INSERT or UPDATE statement and constructs
appropriate bind parameters."""
if parameters is None:
return None
if isinstance(parameters, list) or isinstance(parameters, tuple):
pp = {}
i = 0
for c in self.table.c:
pp[c.key] = parameters[i]
i +=1
parameters = pp
for key in parameters.keys():
value = parameters[key]
if isinstance(value, Select):
value.clear_from(self.table)
elif _is_literal(value):
if _is_literal(key):
col = self.table.c[key]
else:
col = key
try:
parameters[key] = bindparam(col, value)
except KeyError:
del parameters[key]
return parameters
def _find_engine(self):
return self.table.engine
class _Insert(_UpdateBase):
def __init__(self, table, values=None):
self.table = table
self.select = None
self.parameters = self._process_colparams(values)
def accept_visitor(self, visitor):
if self.select is not None:
self.select.accept_visitor(visitor)
visitor.visit_insert(self)
class _Update(_UpdateBase):
def __init__(self, table, whereclause, values=None):
self.table = table
self.whereclause = whereclause
self.parameters = self._process_colparams(values)
def accept_visitor(self, visitor):
if self.whereclause is not None:
self.whereclause.accept_visitor(visitor)
visitor.visit_update(self)
class _Delete(_UpdateBase):
def __init__(self, table, whereclause, **params):
self.table = table
self.whereclause = whereclause
def accept_visitor(self, visitor):
if self.whereclause is not None:
self.whereclause.accept_visitor(visitor)
visitor.visit_delete(self)
|