inertia.py :  » Windows » Python-File-Format-Interface » PyFFI-2.1.4 » pyffi » utils » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Windows » Python File Format Interface 
Python File Format Interface » PyFFI 2.1.4 » pyffi » utils » inertia.py
"""Calculate the mass, center of gravity, and inertia matrix for common
shapes."""

# ***** BEGIN LICENSE BLOCK *****
#
# Copyright (c) 2007-2009, Python File Format Interface
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#    * Redistributions of source code must retain the above copyright
#      notice, this list of conditions and the following disclaimer.
#
#    * Redistributions in binary form must reproduce the above
#      copyright notice, this list of conditions and the following
#      disclaimer in the documentation and/or other materials provided
#      with the distribution.
#
#    * Neither the name of the Python File Format Interface
#      project nor the names of its contributors may be used to endorse
#      or promote products derived from this software without specific
#      prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# ***** END LICENSE BLOCK *****

import math
from pyffi.utils.mathutils import *

# see http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors

def getMassInertiaSphere(radius, density = 1, solid = True):
    """Return mass and inertia matrix for a sphere of given radius and
    density.

    >>> mass, inertia_matrix = getMassInertiaSphere(2.0, 3.0)
    >>> mass # doctest: +ELLIPSIS
    100.53096...
    >>> inertia_matrix[0][0] # doctest: +ELLIPSIS
    160.84954..."""
    if solid:
        mass = density * (4 * math.pi * (radius ** 3)) / 3
        inertia = (2 * mass * (radius ** 2)) / 5
    else:
        mass = density * 4 * math.pi * (radius ** 2)
        inertia = (2 * mass * (radius ** 2)) / 3

    return mass, tuple( tuple( (inertia if i == j else 0)
                               for i in xrange(3) )
                        for j in xrange(3) )

def getMassInertiaBox(size, density = 1, solid = True):
    """Return mass and inertia matrix for a box of given size and
    density.

    >>> mass, inertia = getMassInertiaBox((1.0, 2.0, 3.0), 4.0)
    >>> mass
    24.0
    >>> inertia
    ((26.0, 0, 0), (0, 20.0, 0), (0, 0, 10.0))
    """
    assert(len(size) == 3) # debug
    if solid:
        mass = density * size[0] * size[1] * size[2]
        tmp = tuple(mass * (length ** 2) / 12.0 for length in size)
    else:
        mass = density * sum( x * x for x in size)
        tmp = tuple(mass * (length ** 2) / 6.0 for length in size) # just guessing here, todo calculate it
    return mass, ( ( tmp[1] + tmp[2], 0, 0 ),
                   ( 0, tmp[2] + tmp[0], 0 ),
                   ( 0, 0, tmp[0] + tmp[1] ) )

def getMassInertiaCapsule(length, radius, density = 1, solid = True):
    # cylinder + caps, and caps have volume of a sphere
    if solid:
        mass = density * (length * math.pi * (radius ** 2)
                          + (4 * math.pi * (radius ** 3)) / 3)

        # approximate by cylinder
        # TODO: also include the caps into the inertia matrix
        inertia_xx = mass * (3 * (radius ** 2) + (length ** 2)) / 12.0
        inertia_yy = inertia_xx
        inertia_zz = 0.5 * mass * (radius ** 2)
    else:
        mass = density * (length * 2 * math.pi * radius
                          + 2 * math.pi * (radius ** 2))
        inertia_xx = mass * (6 * (radius ** 2) + (length ** 2)) / 12.0
        inertia_yy = inertia_xx
        inertia_zz = mass * (radius ** 2)

    return mass,  ( ( inertia_xx, 0, 0 ),
                    ( 0, inertia_yy, 0 ),
                    ( 0, 0, inertia_zz ) )

#
# References
# ----------
#
# Jonathan Blow, Atman J Binstock
# "How to find the inertia tensor (or other mass properties) of a 3D solid body represented by a triangle mesh"
# http://number-none.com/blow/inertia/bb_inertia.doc
#
# David Eberly
# "Polyhedral Mass Properties (Revisited)"
# http://www.geometrictools.com//LibPhysics/RigidBody/Wm4PolyhedralMassProperties.pdf
#
# The function is an implementation of the Blow and Binstock algorithm,
# extended for the case where the polygon is a surface (set parameter
# solid = False).
def get_mass_center_inertia_polyhedron(vertices, triangles, density = 1, solid = True):
    """Return mass, center of gravity, and inertia matrix for a polyhedron.

    >>> from pyffi.utils.quickhull import qhull3d
    >>> box = [(0,0,0),(1,0,0),(0,2,0),(0,0,3),(1,2,0),(0,2,3),(1,0,3),(1,2,3)]
    >>> vertices, triangles = qhull3d(box)
    >>> mass, center, inertia = get_mass_center_inertia_polyhedron(
    ...     vertices, triangles, density = 4)
    >>> mass
    24.0
    >>> center
    (0.5, 1.0, 1.5)
    >>> inertia
    ((26.0, 0.0, 0.0), (0.0, 20.0, 0.0), (0.0, 0.0, 10.0))
    >>> poly = [(3,0,0),(0,3,0),(-3,0,0),(0,-3,0),(0,0,3),(0,0,-3)] # very rough approximation of a sphere of radius 2
    >>> vertices, triangles = qhull3d(poly)
    >>> mass, center, inertia = get_mass_center_inertia_polyhedron(
    ...     vertices, triangles, density = 3)
    >>> mass
    108.0
    >>> center
    (0.0, 0.0, 0.0)
    >>> abs(inertia[0][0] - 194.4) < 0.0001
    True
    >>> abs(inertia[1][1] - 194.4) < 0.0001
    True
    >>> abs(inertia[2][2] - 194.4) < 0.0001
    True
    >>> abs(inertia[0][1]) < 0.0001
    True
    >>> abs(inertia[0][2]) < 0.0001
    True
    >>> abs(inertia[1][2]) < 0.0001
    True
    >>> sphere = []
    >>> N = 10
    >>> for j in range(-N+1, N):
    ...     theta = j * 0.5 * math.pi / N
    ...     st, ct = math.sin(theta), math.cos(theta)
    ...     M = max(3, int(ct * 2 * N + 0.5))
    ...     for i in range(0, M):
    ...         phi = i * 2 * math.pi / M
    ...         s, c = math.sin(phi), math.cos(phi)
    ...         sphere.append((2*s*ct, 2*c*ct, 2*st)) # construct sphere of radius 2
    >>> sphere.append((0,0,2))
    >>> sphere.append((0,0,-2))
    >>> vertices, triangles = qhull3d(sphere)
    >>> mass, center, inertia = get_mass_center_inertia_polyhedron(
    ...     vertices, triangles, density = 3, solid = True)
    >>> abs(mass - 100.53) < 10 # 3*(4/3)*pi*2^3 = 100.53
    True
    >>> sum(abs(x) for x in center) < 0.01 # is center at origin?
    True
    >>> abs(inertia[0][0] - 160.84) < 10
    True
    >>> mass, center, inertia = get_mass_center_inertia_polyhedron(
    ...     vertices, triangles, density = 3, solid = False)
    >>> abs(mass - 150.79) < 10 # 3*4*pi*2^2 = 150.79
    True
    >>> abs(inertia[0][0] - mass*0.666*4) < 20 # m*(2/3)*2^2
    True
    """

    # 120 times the covariance matrix of the canonical tetrahedron
    # (0,0,0),(1,0,0),(0,1,0),(0,0,1)
    # integrate(integrate(integrate(z*z, x=0..1-y-z), y=0..1-z), z=0..1) = 1/120
    # integrate(integrate(integrate(y*z, x=0..1-y-z), y=0..1-z), z=0..1) = 1/60
    covariance_canonical = ( (2, 1, 1),
                             (1, 2, 1),
                             (1, 1, 2) )
    covariance_correction = 1.0/120

    covariances = []
    masses = []
    centers = []

    # for each triangle
    # construct a tetrahedron from triangle + (0,0,0)
    # find its matrix, mass, and center (for density = 1, will be corrected at
    # the end of the algorithm)
    for triangle in triangles:
        # get vertices
        vert0, vert1, vert2 = operator.itemgetter(*triangle)(vertices)

        # construct a transform matrix that converts the canonical tetrahedron
        # into (0,0,0),vert0,vert1,vert2
        transform_transposed = ( vert0, vert1, vert2 )
        transform = matTransposed(transform_transposed)

        # find the covariance matrix of the transformed tetrahedron/triangle
        if solid:
            # we shall be needing the determinant more than once, so
            # precalculate it
            determinant = matDeterminant(transform)
            # C' = det(A) * A * C * A^T
            covariances.append(
                matscalarMul(
                    matMul(matMul(transform,
                                  covariance_canonical),
                           transform_transposed),
                    determinant))
            # m = det(A) / 6.0
            masses.append(determinant / 6.0)
            # find center of gravity of the tetrahedron
            centers.append(tuple( 0.25 * sum(vert[i]
                                             for vert in (vert0, vert1, vert2))
                                  for i in xrange(3) ))
        else:
            # find center of gravity of the triangle
            centers.append(tuple( sum(vert[i]
                                      for vert in (vert0, vert1, vert2)) / 3.0
                                  for i in xrange(3) ))
            # find mass of triangle
            # mass is surface, which is half the norm of cross product
            # of two edges
            masses.append(
                vecNorm(vecCrossProduct(
                    vecSub(vert1, vert0), vecSub(vert2, vert0))) / 2.0)
            # find covariance at center of this triangle
            # (this is approximate only as it replaces triangle with point mass
            # todo: find better way)
            covariances.append(
                tuple(tuple( masses[-1]*x*y for x in centers[-1] )
                      for y in centers[-1]))

    # accumulate the results
    total_mass = sum(masses)
    if abs(total_mass) < 0.0001:
        # dimension is probably badly chosen
        #raise ZeroDivisionError("mass is zero (consider calculating inertia with a lower dimension)")
        print("WARNING: mass is nearly zero (%f)" % total_mass)
        return 0, (0,0,0), ((0,0,0),(0,0,0),(0,0,0))
    # weighed average of centers with masses
    total_center = (0, 0, 0)
    for center, mass in izip(centers, masses):
        total_center = vecAdd(total_center,
                              vecscalarMul(center, mass / total_mass))
    # add covariances, and correct the values
    total_covariance = ((0,0,0),(0,0,0),(0,0,0))
    for covariance in covariances:
        total_covariance = matAdd(total_covariance, covariance)
    if solid:
        total_covariance = matscalarMul(total_covariance, covariance_correction)

    # translate covariance to center of gravity:
    # C' = C - m * ( x dx^T + dx x^T + dx dx^T )
    # with x the translation vector and dx the center of gravity
    translate_correction = matscalarMul(tuple(tuple(x * y
                                                    for x in total_center)
                                              for y in total_center),
                                        total_mass)
    total_covariance = matSub(total_covariance, translate_correction)

    # convert covariance matrix into inertia tensor
    trace = sum(total_covariance[i][i] for i in xrange(3))
    trace_matrix = tuple(tuple((trace if i == j else 0)
                               for i in xrange(3))
                         for j in xrange(3))
    total_inertia = matSub(trace_matrix, total_covariance)

    # correct for given density
    total_inertia = matscalarMul(total_inertia, density)
    total_mass *= density

    # correct negative mass
    if total_mass < 0:
        total_mass = -total_mass
        total_inertia = tuple(tuple(-x for x in row)
                              for row in total_inertia)

    return total_mass, total_center, total_inertia

if __name__ == "__main__":
    import doctest
    doctest.testmod()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.