mathutils.py :  » Windows » Python-File-Format-Interface » PyFFI-2.1.4 » pyffi » utils » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Windows » Python File Format Interface 
Python File Format Interface » PyFFI 2.1.4 » pyffi » utils » mathutils.py
"""A lightweight library for common vector and matrix operations."""

# ***** BEGIN LICENSE BLOCK *****
#
# Copyright (c) 2007-2009, Python File Format Interface
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#    * Redistributions of source code must retain the above copyright
#      notice, this list of conditions and the following disclaimer.
#
#    * Redistributions in binary form must reproduce the above
#      copyright notice, this list of conditions and the following
#      disclaimer in the documentation and/or other materials provided
#      with the distribution.
#
#    * Neither the name of the Python File Format Interface
#      project nor the names of its contributors may be used to endorse
#      or promote products derived from this software without specific
#      prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# ***** END LICENSE BLOCK *****

from itertools import izip
import logging
import operator

def float_to_int(value):
    """Convert float to integer, rounding and handling nan and inf
    gracefully.

    >>> float_to_int(0.4)
    0
    >>> float_to_int(-0.4)
    0
    >>> float_to_int(0.6)
    1
    >>> float_to_int(-0.6)
    -1
    >>> float_to_int(float('inf'))
    pyffi.utils.mathutils:WARNING:float_to_int converted +inf to +2147483648.
    2147483648
    >>> float_to_int(-float('inf'))
    pyffi.utils.mathutils:WARNING:float_to_int converted -inf to -2147483648.
    -2147483648
    >>> float_to_int(float('nan'))
    pyffi.utils.mathutils:WARNING:float_to_int converted nan to 0.
    0
    """
    try:
        return int(value + 0.5 if value > 0 else value - 0.5)
    except ValueError:
        logging.getLogger("pyffi.utils.mathutils").warn(
            "float_to_int converted nan to 0.")
        return 0
    except OverflowError:
        if value > 0:
            logging.getLogger("pyffi.utils.mathutils").warn(
                "float_to_int converted +inf to +2147483648.")
            return 2147483648
        else:
            logging.getLogger("pyffi.utils.mathutils").warn(
                "float_to_int converted -inf to -2147483648.")
            return -2147483648

def getBoundingBox(veclist):
    """Calculate bounding box (pair of vectors with minimum and maximum
    coordinates).

    >>> getBoundingBox([(0,0,0), (1,1,2), (0.5,0.5,0.5)])
    ((0, 0, 0), (1, 1, 2))"""
    if not veclist:
        # assume 3 dimensions if veclist is empty
        return (0,0,0), (0,0,0)

    # find bounding box
    dim = len(veclist[0])
    return (
        tuple((min(vec[i] for vec in veclist) for i in xrange(dim))),
        tuple((max(vec[i] for vec in veclist) for i in xrange(dim))))

def getCenterRadius(veclist):
    """Calculate center and radius of given list of vectors.

    >>> getCenterRadius([(0,0,0), (1,1,2), (0.5,0.5,0.5)]) # doctest: +ELLIPSIS
    ((0.5, 0.5, 1.0), 1.2247...)
    """
    if not veclist:
        # assume 3 dimensions if veclist is empty
        return (0,0,0), 0

    # get bounding box
    vecmin, vecmax = getBoundingBox(veclist)

    # center is in the center of the bounding box
    center = tuple((minco + maxco) * 0.5
                   for minco, maxco in izip(vecmin, vecmax))

    # radius is the largest distance from the center
    r2 = 0.0
    for vec in veclist:
        dist = vecSub(center, vec)
        r2 = max(r2, vecDotProduct(dist, dist))
    radius = r2 ** 0.5

    return center, radius

def vecSub(vec1, vec2):
    """Vector substraction."""
    return tuple(x - y for x, y in izip(vec1, vec2))

def vecAdd(vec1, vec2):
    return tuple(x + y for x, y in izip(vec1, vec2))

def vecscalarMul(vec, scalar):
    return tuple(x * scalar for x in vec)

def vecDotProduct(vec1, vec2):
    """The vector dot product (any dimension).

    >>> vecDotProduct((1,2,3),(4,-5,6))
    12"""
    return sum(x1 * x2 for x1, x2 in izip(vec1, vec2))

def vecDistance(vec1, vec2):
    """Return distance between two vectors (any dimension).

    >>> vecDistance((1,2,3),(4,-5,6)) # doctest: +ELLIPSIS
    8.185...
    """
    return vecNorm(vecSub(vec1, vec2))

def vecNormal(vec1, vec2, vec3):
    """Returns a vector that is orthogonal on C{triangle}."""
    return vecCrossProduct(vecSub(vec2, vec1), vecSub(vec3, vec1))

def vecDistanceAxis(axis, vec):
    """Return distance between the axis spanned by axis[0] and axis[1] and the
    vector v, in 3 dimensions. Raises ZeroDivisionError if the axis points
    coincide.

    >>> vecDistanceAxis([(0,0,0), (0,0,1)], (0,3.5,0))
    3.5
    >>> vecDistanceAxis([(0,0,0), (1,1,1)], (0,1,0.5)) # doctest: +ELLIPSIS
    0.70710678...
    """
    return vecNorm(vecNormal(axis[0], axis[1], vec)) / vecDistance(*axis)

def vecDistanceTriangle(triangle, vert):
    """Return (signed) distance between the plane spanned by triangle[0],
    triangle[1], and triange[2], and the vector v, in 3 dimensions.

    >>> vecDistanceTriangle([(0,0,0),(1,0,0),(0,1,0)], (0,0,1))
    1.0
    >>> vecDistanceTriangle([(0,0,0),(0,1,0),(1,0,0)], (0,0,1))
    -1.0
    """
    normal = vecNormal(*triangle)
    return vecDotProduct(normal, vecSub(vert, triangle[0])) \
           / vecNorm(normal)

def vecNorm(vec):
    """Norm of a vector (any dimension).

    >>> vecNorm((2,3,4)) # doctest: +ELLIPSIS
    5.3851648...
    """
    return vecDotProduct(vec, vec) ** 0.5

def vecNormalized(vec):
    """Normalized version of a vector (any dimension).

    >>> vecNormalized((2,3,4)) # doctest: +ELLIPSIS
    (0.371..., 0.557..., 0.742...)
    """
    return vecscalarMul(vec, 1.0 / vecNorm(vec))

def vecCrossProduct(vec1, vec2):
    """The vector cross product (in 3d).

    >>> vecCrossProduct((1,0,0),(0,1,0))
    (0, 0, 1)
    >>> vecCrossProduct((1,2,3),(4,5,6))
    (-3, 6, -3)
    """
    return (vec1[1] * vec2[2] - vec1[2] * vec2[1],
            vec1[2] * vec2[0] - vec1[0] * vec2[2],
            vec1[0] * vec2[1] - vec1[1] * vec2[0])

def matTransposed(mat):
    """Return the transposed of a nxn matrix.

    >>> matTransposed(((1, 2), (3, 4)))
    ((1, 3), (2, 4))"""
    dim = len(mat)
    return tuple( tuple( mat[i][j]
                         for i in xrange(dim) )
                  for j in xrange(dim) )

def matscalarMul(mat, scalar):
    """Return matrix * scalar."""
    dim = len(mat)
    return tuple( tuple( mat[i][j] * scalar
                         for j in xrange(dim) )
                  for i in xrange(dim) )

def matvecMul(mat, vec):
    """Return matrix * vector."""
    dim = len(mat)
    return tuple( sum( mat[i][j] * vec[j] for j in xrange(dim) )
                  for i in xrange(dim) )

def matMul(mat1, mat2):
    """Return matrix * matrix."""
    dim = len(mat1)
    return tuple( tuple( sum( mat1[i][k] * mat2[k][j]
                              for k in xrange(dim) )
                         for j in xrange(dim) )
                  for i in xrange(dim) )

def matAdd(mat1, mat2):
    """Return matrix + matrix."""
    dim = len(mat1)
    return tuple( tuple( mat1[i][j] + mat2[i][j]
                         for j in xrange(dim) )
                  for i in xrange(dim) )

def matSub(mat1, mat2):
    """Return matrix - matrix."""
    dim = len(mat1)
    return tuple( tuple( mat1[i][j] - mat2[i][j]
                         for j in xrange(dim) )
                  for i in xrange(dim) )

def matCofactor(mat, i, j):
    dim = len(mat)
    return matDeterminant(tuple( tuple( mat[ii][jj]
                                        for jj in xrange(dim)
                                        if jj != j )
                                 for ii in xrange(dim)
                                 if ii != i ))

def matDeterminant(mat):
    """Calculate determinant.

    >>> matDeterminant( ((1,2,3), (4,5,6), (7,8,9)) )
    0
    >>> matDeterminant( ((1,2,4), (3,0,2), (-3,6,2)) )
    36
    """
    dim = len(mat)
    if dim == 0: return 0
    elif dim == 1: return mat[0][0]
    elif dim == 2: return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1]
    else:
        return sum( (-1 if i&1 else 1) * mat[i][0] * matCofactor(mat, i, 0)
                    for i in xrange(dim) )

if __name__ == "__main__":
    import doctest
    doctest.testmod()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.