quickhull.py :  » Windows » Python-File-Format-Interface » PyFFI-2.1.4 » pyffi » utils » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Windows » Python File Format Interface 
Python File Format Interface » PyFFI 2.1.4 » pyffi » utils » quickhull.py
"""A simple implementation of the quick hull algorithm.

Usually you should only need the L{qhull3d} function, although the module
contains some potentially useful helper functions as well.

Examples
========

Tetrahedron
-----------

>>> import random
>>> tetrahedron = [(0,0,0),(1,0,0),(0,1,0),(0,0,1)]
>>> for i in range(200):
...     alpha = random.random()
...     beta = random.random()
...     gamma = 1 - alpha - beta
...     if gamma >= 0:
...         tetrahedron.append((alpha, beta, gamma))
>>> verts, triangles = qhull3d(tetrahedron)
>>> (0,0,0) in verts
True
>>> (1,0,0) in verts
True
>>> (0,1,0) in verts
True
>>> (0,0,1) in verts
True
>>> len(verts)
4
>>> len(triangles)
4

A double pyramid polyhedron
---------------------------

>>> poly = [(2,0,0),(0,2,0),(-2,0,0),(0,-2,0),(0,0,2),(0,0,-2)]
>>> vertices, triangles = qhull3d(poly)
>>> len(vertices)
6
>>> len(triangles)
8
>>> for triangle in triangles: # check orientation relative to origin
...     verts = [ vertices[i] for i in triangle ]
...     assert(vecDotProduct(vecCrossProduct(*verts[:2]), verts[2]) == 8)

A pyramid
---------

>>> verts, triangles = qhull3d([(0,0,0),(1,0,0),(0,1,0),(1,1,0),(0.5,0.5,1)])
>>> (0,0,0) in verts
True
>>> (1,0,0) in verts
True
>>> (0,1,0) in verts
True
>>> (1,1,0) in verts
True
>>> len(verts)
5
>>> len(triangles)
6

The unit cube
-------------

>>> import random
>>> cube = [(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)]
>>> for i in range(200):
...     cube.append((random.random(), random.random(), random.random()))
>>> verts, triangles = qhull3d(cube)
>>> len(triangles) # 6 faces, written as 12 triangles
12
>>> len(verts)
8

A degenerate shape: the unit square
-----------------------------------

>>> import random
>>> plane = [(0,0,0),(1,0,0),(0,1,0),(1,1,0)]
>>> for i in range(200):
...     plane.append((random.random(), random.random(), 0))
>>> verts, triangles = qhull3d(plane)
>>> len(verts)
4
>>> len(triangles)
2

A random shape
--------------

>>> import random
>>> shape = []
>>> for i in range(2000):
...     vert = (random.random(), random.random(), random.random())
...     shape.append(vert)
>>> verts, triangles = qhull3d(shape)
"""

# ***** BEGIN LICENSE BLOCK *****
#
# Copyright (c) 2007-2009, Python File Format Interface
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#    * Redistributions of source code must retain the above copyright
#      notice, this list of conditions and the following disclaimer.
#
#    * Redistributions in binary form must reproduce the above
#      copyright notice, this list of conditions and the following
#      disclaimer in the documentation and/or other materials provided
#      with the distribution.
#
#    * Neither the name of the Python File Format Interface
#      project nor the names of its contributors may be used to endorse
#      or promote products derived from this software without specific
#      prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# ***** END LICENSE BLOCK *****

from pyffi.utils.mathutils import *
from itertools import izip
import operator

# adapted from
# http://en.literateprograms.org/Quickhull_(Python,_arrays)
def qdome2d(vertices, base, normal, precision = 0.0001):
    """Build a convex dome from C{vertices} on top of the two C{base} vertices,
    in the plane with normal C{normal}. This is a helper function for
    L{qhull2d}, and should usually not be called directly.

    :param vertices: The vertices to construct the dome from.
    :param base: Two vertices that serve as a base for the dome.
    :param normal: Orientation of the projection plane used for calculating
        distances.
    :param precision: Distance used to decide whether points lie outside of
        the hull or not.
    :return: A list of vertices that make up a fan of the dome."""

    vert0, vert1 = base
    outer = [ (dist, vert)
          for dist, vert
          in izip( ( vecDotProduct(vecCrossProduct(normal,
                                                   vecSub(vert1, vert0)),
                                   vecSub(vert, vert0))
                     for vert in vertices ),
                   vertices )
          if dist > precision ]

    if outer:
        pivot = max(outer)[1]
        outer_verts = map(operator.itemgetter(1), outer)
        return qdome2d(outer_verts, [vert0, pivot], normal) \
               + qdome2d(outer_verts, [pivot, vert1], normal)[1:]
    else:
        return base

def qhull2d(vertices, normal, precision = 0.0001):
    """Simple implementation of the 2d quickhull algorithm in 3 dimensions for
    vertices viewed from the direction of C{normal}.
    Returns a fan of vertices that make up the surface. Called by
    L{qhull3d} to convexify coplanar vertices.

    >>> import random
    >>> import math
    >>> plane = [(0,0,0),(1,0,0),(0,1,0),(1,1,0)]
    >>> for i in range(200):
    ...     plane.append((random.random(), random.random(), 0))
    >>> verts = qhull2d(plane, (0,0,1))
    >>> len(verts)
    4
    >>> disc = []
    >>> for i in range(50):
    ...     theta = (2 * math.pi * i) / 50
    ...     disc.append((0, math.sin(theta), math.cos(theta)))
    >>> verts = qhull2d(disc, (1,0,0))
    >>> len(verts)
    50
    >>> for i in range(400):
    ...     disc.append((0, 1.4 * random.random() - 0.7, 1.4 * random.random() - 0.7))
    >>> verts = qhull2d(disc, (1,0,0))
    >>> len(verts)
    50
    >>> dist = 2 * math.pi / 50
    >>> for i in range(len(verts) - 1):
    ...      assert(abs(vecDistance(verts[i], verts[i+1]) - dist) < 0.001)

    :param vertices: The vertices to construct the hull from.
    :param normal: Orientation of the projection plane used for calculating
        distances.
    :param precision: Distance used to decide whether points lie outside of
        the hull or not.
    :return: A list of vertices that make up a fan of extreme points.
    """
    base = basesimplex3d(vertices, precision)
    if len(base) >= 2:
        vert0, vert1 = base[:2]
        return qdome2d(vertices, [vert0, vert1], normal) \
               + qdome2d(vertices, [vert1, vert0], normal)[1:-1]
    else:
        return base

def basesimplex3d(vertices, precision = 0.0001):
    """Find four extreme points, to be used as a starting base for the
    quick hull algorithm L{qhull3d}.

    The algorithm tries to find four points that are
    as far apart as possible, because that speeds up the quick hull
    algorithm. The vertices are ordered so their signed volume is positive.

    If the volume zero up to C{precision} then only three vertices are
    returned. If the vertices are colinear up to C{precision} then only two
    vertices are returned. Finally, if the vertices are equal up to C{precision}
    then just one vertex is returned.

    >>> import random
    >>> cube = [(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)]
    >>> for i in range(200):
    ...     cube.append((random.random(), random.random(), random.random()))
    >>> base = basesimplex3d(cube)
    >>> len(base)
    4
    >>> (0,0,0) in base
    True
    >>> (1,1,1) in base
    True

    :param vertices: The vertices to construct extreme points from.
    :param precision: Distance used to decide whether points coincide,
        are colinear, or coplanar.
    :return: A list of one, two, three, or four vertices, depending on the
        the configuration of the vertices.
    """
    # sort axes by their extent in vertices
    extents = sorted(range(3),
                     key=lambda i:
                     max(vert[i] for vert in vertices)
                     - min(vert[i] for vert in vertices))
    # extents[0] has the index with largest extent etc.
    # so let us minimize and maximize vertices with key
    # (vert[extents[0]], vert[extents[1]], vert[extents[2]])
    # which we can write as operator.itemgetter(*extents)(vert)
    vert0 = min(vertices, key=operator.itemgetter(*extents))
    vert1 = max(vertices, key=operator.itemgetter(*extents))
    # check if all vertices coincide
    if vecDistance(vert0, vert1) < precision:
        return [ vert0 ]
    # as a third extreme point select that one which maximizes the distance
    # from the vert0 - vert1 axis
    vert2 = max(vertices,
                key=lambda vert: vecDistanceAxis((vert0, vert1), vert))
    #check if all vertices are colinear
    if vecDistanceAxis((vert0, vert1), vert2) < precision:
        return [ vert0, vert1 ]
    # as a fourth extreme point select one which maximizes the distance from
    # the v0, v1, v2 triangle
    vert3 = max(vertices,
                key=lambda vert: abs(vecDistanceTriangle((vert0, vert1, vert2),
                                                         vert)))
    # ensure positive orientation and check if all vertices are coplanar
    orientation = vecDistanceTriangle((vert0, vert1, vert2), vert3)
    if orientation > precision:
        return [ vert0, vert1, vert2, vert3 ]
    elif orientation < -precision:
        return [ vert1, vert0, vert2, vert3 ]
    else:
        # coplanar
        return [ vert0, vert1, vert2 ]

def qhull3d(vertices, precision = 0.0001, verbose = False):
    """Return the triangles making up the convex hull of C{vertices}.
    Considers distances less than C{precision} to be zero (useful to simplify
    the hull of a complex mesh, at the expense of exactness of the hull).

    :param vertices: The vertices to find the hull of.
    :param precision: Distance used to decide whether points lie outside of
        the hull or not. Larger numbers mean fewer triangles, but some vertices
        may then end up outside the hull, at a distance of no more than
        C{precision}.
    :param verbose: Print information about what the algorithm is doing. Only
        useful for debugging.
    :return: A list cointaining the extreme points of C{vertices}, and
        a list of triangle indices containing the triangles that connect
        all extreme points.
    """
    # find a simplex to start from
    hull_vertices = basesimplex3d(vertices, precision)

    # handle degenerate cases
    if len(hull_vertices) == 3:
        # coplanar
        hull_vertices = qhull2d(vertices, vecNormal(*hull_vertices))
        return hull_vertices, [ (0, i+1, i+2)
                                for i in xrange(len(hull_vertices) - 2) ]
    elif len(hull_vertices) <= 2:
        # colinear or singular
        # no triangles for these cases
        return hull_vertices, []

    # construct list of triangles of this simplex
    hull_triangles = set([ operator.itemgetter(i,j,k)(hull_vertices)
                         for i, j, k in ((1,0,2), (0,1,3), (0,3,2), (3,1,2)) ])

    if verbose:
        print("starting set", hull_vertices)

    # construct list of outer vertices for each triangle
    outer_vertices = {}
    for triangle in hull_triangles:
        outer = \
            [ (dist, vert)
              for dist, vert
              in izip( ( vecDistanceTriangle(triangle, vert)
                         for vert in vertices ),
                       vertices )
              if dist > precision ]
        if outer:
            outer_vertices[triangle] = outer

    # as long as there are triangles with outer vertices
    while outer_vertices:
        # grab a triangle and its outer vertices
        tmp_iter = outer_vertices.iteritems()
        triangle, outer = tmp_iter.next() # tmp_iter trick to make 2to3 work
        # calculate pivot point
        pivot = max(outer)[1]
        if verbose:
            print("pivot", pivot)
        # add it to the list of extreme vertices
        hull_vertices.append(pivot)
        # and update the list of triangles:
        # 1. calculate visibility of triangles to pivot point
        visibility = [ vecDistanceTriangle(othertriangle, pivot) > precision
                       for othertriangle in outer_vertices.iterkeys() ]
        # 2. get list of visible triangles
        visible_triangles = [ othertriangle
                              for othertriangle, visible
                              in izip(outer_vertices.iterkeys(), visibility)
                              if visible ]
        # 3. find all edges of visible triangles
        visible_edges = []
        for visible_triangle in visible_triangles:
            visible_edges += [operator.itemgetter(i,j)(visible_triangle)
                              for i, j in ((0,1),(1,2),(2,0))]
        if verbose:
            print("visible edges", visible_edges)
        # 4. construct horizon: edges that are not shared with another triangle
        horizon_edges = [ edge for edge in visible_edges
                          if not tuple(reversed(edge)) in visible_edges ]
        # 5. remove visible triangles from list
        # this puts a hole inside the triangle list
        visible_outer = set()
        for outer_verts in outer_vertices.itervalues():
            visible_outer |= set(map(operator.itemgetter(1), outer_verts))
        for triangle in visible_triangles:
            if verbose:
                print("removing", triangle)
            hull_triangles.remove(triangle)
            del outer_vertices[triangle]
        # 6. close triangle list by adding cone from horizon to pivot
        # also update the outer triangle list as we go
        for edge in horizon_edges:
            newtriangle = edge + ( pivot, )
            newouter = \
                [ (dist, vert)
                  for dist, vert in izip( ( vecDistanceTriangle(newtriangle,
                                                                vert)
                                            for vert in visible_outer ),
                                          visible_outer )
                  if dist > precision ]
            hull_triangles.add(newtriangle)
            if newouter:
                outer_vertices[newtriangle] = newouter
            if verbose:
                print("adding", newtriangle, newouter)

    # no triangle has outer vertices anymore
    # so the convex hull is complete!
    # remap the triangles to indices that point into hull_vertices
    return hull_vertices, [ tuple(hull_vertices.index(vert)
                                  for vert in triangle)
                            for triangle in hull_triangles ]

if __name__ == "__main__":
    import doctest
    doctest.testmod()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.