Sort array utilities : Array Sort Search « Collections « Java Tutorial

Java Tutorial
1. Language
2. Data Type
3. Operators
4. Statement Control
5. Class Definition
6. Development
7. Reflection
8. Regular Expressions
9. Collections
10. Thread
11. File
12. Generics
13. I18N
14. Swing
15. Swing Event
16. 2D Graphics
17. SWT
18. SWT 2D Graphics
19. Network
20. Database
21. Hibernate
22. JPA
23. JSP
24. JSTL
25. Servlet
26. Web Services SOA
27. EJB3
28. Spring
29. PDF
30. Email
31. J2ME
32. J2EE Application
33. XML
34. Design Pattern
35. Log
36. Security
37. Apache Common
38. Ant
39. JUnit
Java
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Tutorial » Collections » Array Sort Search 
9. 8. 19. Sort array utilities
/*
 * Copyright 2004, 2005, 2006 Odysseus Software GmbH
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */ 

import java.util.Arrays;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;

/**
 * Utility class providing some useful static sort methods. The sort routines
 * all return index permutations p such that data[p[0]],..,data[p[data.length-1]]
 * is in sorted order. The data array itself is not modified.
 * To actually rearrange the array elements, the inverse of p can be used to
 * permute the array, such that data[0],..,data[data.length-1] is in sorted
 * order. Use <code>getIterator(p, data)</code> to iterate in sorted order.
 * A code example may show you what to do next:
 * <pre>
 * String[] colors = { "red", "green", "blue" };
 * int[] p = SortUtils.sort(colors, new StringComparator());
 * // --> (colors[p[0]], colors[p[1]], colors[p[2]]) == ("blue","green","red")
 * Iterator iter = SortUtils.getIterator(p, colors)
 * // --> (iter.next(), iter.next(), iter.next()) == ("blue","green","red")
 * SortUtils.permute(SortUtils.inverse(p), colors, true);
 * // --> (colors[0], colors[1], colors[2]) == ("blue","green","red")
 * </pre>
 * Stable sorts (preserving order of equal elements) are supported.
 * Sorting is done using quick-sort mith median of 3 (and insertion-sort
 * for small ranges).
 *
 @author Christoph Beck
 */
public class SortUtils {
  /**
   * Helper class used to perform quicksort.
   *
   @author Christoph Beck
   */
  static final class QuickSorter {
    private static final int INSERTIONSORT_THRESHOLD = 7;

    private final Object[] data;

    QuickSorter(Object[] data) {
      this.data = data;
    }
    private int compare(Comparator cmp, boolean stable, int i, int j) {
      int result = cmp.compare(data[i], data[j]);
      if (result == && stable && i != j) {
        result = i < j ? -1;
      }
      return result;
    }
    private int med3(Comparator cmp, int a, int b, int c) {
        return  (compare(cmp, false, a, b?
            (compare(cmp, false, b, c? b : compare(cmp, false, a, c? c : a:
            (compare(cmp, false, b, c? b : compare(cmp, false, a, c? c : a));
    }
    private int pivot(int[] indices, Comparator cmp, int lo, int hi) {
      return med3(cmp, indices[lo + 1], indices[(lo + hi2], indices[hi - 1]);
    }
    private void swap(int[] indices, int i, int j) {
      int tmp = indices[i];
      indices[i= indices[j];
      indices[j= tmp;
    }
    private void insertionSort(int[] indices, Comparator cmp, boolean stable, int lo, int hi) {
      for (int i = lo; i <= hi; i++) {
            for (int j = i; j > lo && compare(cmp, stable, indices[j-1], indices[j]) 0; j--) {
              swap(indices, j-1, j);
            }
          }
    }
    private void quickSort(int[] indices, Comparator cmp, boolean stable, int lo0, int hi0) {
      int pivot = pivot(indices, cmp, lo0, hi0);
      int lo = lo0, hi = hi0;
      while (lo <= hi) {
        while (lo < hi0 && compare(cmp, stable, pivot, indices[lo]) 0)
          ++lo;
        while (hi > lo0 && compare(cmp, stable, pivot, indices[hi]) 0)
          --hi;
        if (lo <= hi) {
          swap(indices, lo++, hi--);
        }
      }
      sort(indices, cmp, stable, lo0, hi);
      sort(indices, cmp, stable, lo, hi0);
    }
    void sort(int[] indices, Comparator cmp, boolean stable, int lo, int hi) {
      if (hi - lo < INSERTIONSORT_THRESHOLD) {
        insertionSort(indices, cmp, stable, lo, hi);
      else {
        quickSort(indices, cmp, stable, lo, hi);
      }
    }
    void sort(int[] indices, Comparator cmp, boolean stable) {
      sort(indices, cmp, stable, 0, indices.length - 1);
    }
    int[] sort(Comparator cmp, boolean stable) {
      int[] indices = identity(data.length);
      sort(indices, cmp, stable);
      return indices;
    }
  }

  /**
   * Create identity permutation, that is <code>{0, 1, ..., n}</code>
   */
  public static int[] identity(int n) {
    int[] indices = new int[n];
    for (int i = 0; i < n; i++)
      indices[i= i;
    return indices;
  }

  /**
   * Create reverse permutation, that is <code>{n-1, .... 1, 0}</code>
   */
  public static int[] reverse(int n) {
    int[] indices = new int[n];
    for (int i = 0; i < n; i++)
      indices[i= n - i - 1;
    return indices;
  }

  /**
   * Compute inverse permutation
   */
  public static int[] inverse(int[] p) {
    int[] pi = new int[p.length];
    for (int i = 0; i < pi.length; i++)
      pi[p[i]] = i;
    return pi;
  }

  /**
   * Rearrange the specified data according to the specified permutation.
   * That is, the array is rearranged, such that
   * <code>data_after[p[i]] == data_before[i]</code>.
   @param data data to be permuted
   @param p the permutation
   @param clone if true, rearrange a clone instead of the original data;
   @return the permuted array (which is the original reference if clone == false)
   */
  public static Object[] permute(int[] p, Object[] data, boolean clone) {
    Object[] permuted = null;

    if (clone) {
      permuted = (Object[])data.clone();
      for (int i = 0; i < data.length; i++)
        permuted[p[i]] = data[i];
    else {
      // run thru cycles
      int i = 0;
      while (i < p.length) {
        if (p[i|| p[i== i// skip already handled and cycles of length 1
          ++i;
        else // start a new cycle
          int j = p[i];
          Object save = data[i];
          while (p[j>= 0) {
            Object tmp = data[j];
            data[j= save;
            save = tmp;
            i = j;
            j = p[j];
            p[i= -1;
          }
        }
      }
      permuted = data;
    }
    return permuted;
  }

  /**
   * Answer iterator, which iterates over specified data array according
   * to the specified permutation, that is
   * <code>data[p[0]],..,data[p[data.length-1]]</code>
   */
  public static Iterator getIterator(final int[] p, final Object[] data) {
    return new Iterator() {
      int pos = 0;
      public boolean hasNext() {
        return pos < data.length;
      }
      public Object next() {
        return data[p[pos++]];
      }
      public void remove() {
        throw new UnsupportedOperationException("Cannot remove from immutable iterator!");
      }
    };
  }

  /**
   * Answer iterator, which iterates over specified data list according
   * to the specified permutation, that is
   * <code>data.get(p[0]),..,data.get(p[data.length-1])</code>
   */
  public static Iterator getIterator(final int[] p, final List data) {
    return new Iterator() {
      int pos = 0;
      public boolean hasNext() {
        return pos < data.size();
      }
      public Object next() {
        return data.get(p[pos++]);
      }
      public void remove() {
        throw new UnsupportedOperationException("Cannot remove from immutable iterator!");
      }
    };
  }

//  /**
//   * An improved heap builder.
//   * Assumes children of i at 2i and 2i+1 (requires i>0)
//   */
//  private static void cheap(int[] indices, Object[] data, Comparator comparator, int i, int j) {
//    int k = (i << 1);
//    if (k > j)
//      return;
//    while (k < j) {
//      if (comparator.compare(data[indices[k]], data[indices[k + 1]]) < 0)
//        k++;
//      k <<= 1;
//    }
//    if (k > j)
//      k >>= 1;
//    while (comparator.compare(data[indices[k]], data[indices[i]]) < 0)
//      k >>= 1;
//    int t1 = indices[i], t2;
//    while (k > i) {
//      t2 = indices[k];
//      indices[k] = t1;
//      k >>= 1;
//      t1 = indices[k];
//      indices[k] = t2;
//      k >>= 1;
//    }
//    if (k == i)
//      indices[i] = t1;
//  }
//
//  /**
//   * Do a (clever) heapsort.
//   *
//   * @param comparator Comparator object specifying the sort order.
//   */
//  public static void cheapSort(int[] indices, Object[] data, Comparator comparator) {
//    int n = data.length;
//    if (n > 1) {
//      int i;
//      int m = 0;
//      for (i = 1; i < n; i++)
//        if (comparator.compare(data[indices[i]], data[indices[m]]) < 0)
//          m = i;
//      if (m > 0) {
//        int t = indices[0];
//        indices[0] = indices[m];
//        indices[m] = t;
//      }
//      if (n > 2) {
//        for (i = n / 2; i > 1; i--)
//          cheap(indices, data, comparator, i, n - 1);
//        for (i = n - 1; i > 1; i--) {
//          cheap(indices, data, comparator, 1, i);
//          int t = indices[1];
//          indices[1] = indices[i];
//          indices[i] = t;
//        }
//      }
//    }
//  }
//
//  /**
//   * Perform a cheapsort
//   */
//  public static int[] cheapSort(Object[] data, Comparator comparator) {
//    int[] indices = identity(data.length);
//    cheapSort(indices, data, comparator);
//    return indices;
//  }

  /**
   * Do a sort on indices.
   @param data data to be sorted
   @param comparator comparator to use
   @param stable do a stable sort iff true
   @param indices into data (any permutation of 0,..data.length-1).
   */
  public static void sort(int[] indices, Object[] data, Comparator comparator, boolean stable) {
    new QuickSorter(data).sort(indices, comparator, stable);
  }

  /**
   * Do a sort on indices.
   @param data data to be sorted
   @param comparator comparator to use
   @param stable do a stable sort iff true
   @return permutation p such that data[p[0]],..,data[p[data.length-1]] is in sorted order
   */
  public static int[] sort(Object[] data, Comparator comparator, boolean stable) {
    int[] indices = identity(data.length);
    sort(indices, data, comparator, stable);
    return indices;
  }

  /**
   * Do an unstable sort.
   @param data data to be sorted
   @param comparator comparator to use
   @return permutation p such that data[p[0]],..,data[p[data.length-1]] is in sorted order
   */
  public static int[] sort(Object[] data, Comparator comparator) {
    return sort(data, comparator, false);
  }

  /**
   * Do an unstable sort.
   @param data data to be sorted
   @param indices into data (permutation of 0,..data.length-1).
   */
  public static void sort(int[] indices, Object[] data, Comparator comparator) {
    sort(indices, data, comparator, false);
  }

  /**
   * Test method
   */
  public static void main(String[] args) {
    Comparator cmp = new Comparator() {
      public int compare(Object o1, Object o2) {
        return ((Comparable)o1).compareTo(o2);
      }
    };

    int n = 1000000;
    if (args.length == 1)
      try {
        n = Integer.parseInt(args[0]);
      catch (Exception e) {
        System.err.println(e);
      }
    System.out.println("Generating " + n + " random integers...");
    java.util.Random random = new java.util.Random();
    Integer[] data = new Integer[n];
    for (int i = 0; i < n; i++) {
      data[inew Integer(Math.abs(random.nextInt()));
//      data[i] = new Integer(i);
    }
    int[] indices;
    long time;

    System.out.print("Arrays.sort...");
    time = System.currentTimeMillis();
    Integer[] clone = (Integer[])data.clone();
    Arrays.sort(clone, cmp);
    System.out.println(System.currentTimeMillis()-time  + "ms");

    System.out.print("quicksort...");
    indices = identity(n);
    time = System.currentTimeMillis();
    sort(indices, data, cmp, false);
    System.out.println(System.currentTimeMillis()-time  + "ms");
    for (int i = 1; i < n; i++)
      if (cmp.compare(data[indices[i-1]], data[indices[i]]) 0)
        System.err.println("proplem: quickSort at " + i);

    System.out.print("quicksort stable...");
//    indices = identity(n);
    time = System.currentTimeMillis();
    sort(indices, data, cmp, true);
    System.out.println(System.currentTimeMillis()-time + "ms");
    for (int i = 1; i < n; i++) {
      int res = cmp.compare(data[indices[i-1]], data[indices[i]]);
      if (res > 0)
        System.err.println("proplem: quickSort stable at " + i);
      if (res == && indices[i-1> indices[i])
        System.err.println("proplem: quickSort stable (not stable) at " + i);
    }

//    System.out.print("cheapsort...");
//    time = System.currentTimeMillis();
//    indices = cheapSort(data, cmp);
//    System.out.println(System.currentTimeMillis()-time + "ms");
//    for (int i = 1; i < n; i++)
//      if (cmp.compare(data[indices[i-1]], data[indices[i]]) > 0)
//        System.err.println("proplem: cheapSort at " + i);
  
    System.out.print("permutate copy...");
    time = System.currentTimeMillis();
    Object[] data_copy = permute(inverse(indices), data, true);
    System.out.println(System.currentTimeMillis()-time + "ms");
    for (int i = 1; i < n; i++)
      if (cmp.compare(data_copy[i-1], data_copy[i]) 0)
        System.err.println("proplem: permute copy at " + i);

    System.out.print("permutate original...");
    time = System.currentTimeMillis();
    permute(inverse(indices), data, false);
    System.out.println(System.currentTimeMillis()-time + "ms");
    for (int i = 1; i < n; i++)
      if (cmp.compare(data[i-1], data[i]) 0)
        System.err.println("proplem: permute original at " + i);
  }
}
9. 8. Array Sort Search
9. 8. 1. Sorting Arrays
9. 8. 2. Sorting a subset of array elements
9. 8. 3. Sorting arrays of objects
9. 8. 4. Object Arrays: Searching for elements in a sorted object array
9. 8. 5. Searching Arrays
9. 8. 6. Finds the index of the given object in the array starting at the given index.
9. 8. 7. Finds the index of the given object in the array.
9. 8. 8. Finds the last index of the given object in the array starting at the given index.
9. 8. 9. Finds the value in the range (start,limit) of the largest element (rank) where the count of all smaller elements in that range is less than or equals target.
9. 8. 10. Returns an index into arra (or -1) where the character is not in the charset byte array.
9. 8. 11. Returns an int[] array of length segments containing the distribution count of the elements in unsorted int[] array with values between min and max (range).
9. 8. 12. Returns the minimum value in an array.
9. 8. 13. Returns true if all the references in array1 are equal to all the references in array2 (two null references are considered equal for this test).
9. 8. 14. Get the element index or last index among a boolean type array
9. 8. 15. Produces a new array containing the elements between the start and end indices.
9. 8. 16. Test the equality of two object arrays
9. 8. 17. Get the index and last index of an int type value array
9. 8. 18. FastQSorts the [l,r] partition (inclusive) of the specfied array of Rows, using the comparator.
9. 8. 19. Sort array utilities
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.