TypeUtils.cs :  » 2.6.4-mono-.net-core » System.Dynamic » System » Dynamic » Utils » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » 2.6.4 mono .net core » System.Dynamic 
System.Dynamic » System » Dynamic » Utils » TypeUtils.cs
/* ****************************************************************************
 *
 * Copyright (c) Microsoft Corporation. 
 *
 * This source code is subject to terms and conditions of the Microsoft Public License. A 
 * copy of the license can be found in the License.html file at the root of this distribution. If 
 * you cannot locate the  Microsoft Public License, please send an email to 
 * dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound 
 * by the terms of the Microsoft Public License.
 *
 * You must not remove this notice, or any other, from this software.
 *
 *
 * ***************************************************************************/

#if CLR2
using Microsoft.Scripting.Ast;
#else
using System.Linq.Expressions;
#endif
#if SILVERLIGHT
using System.Core;
#endif

using System.Collections.Generic;
using System.Diagnostics;
using System.Reflection;

namespace System.Dynamic.Utils{

    internal static class TypeUtils {
        private const BindingFlags AnyStatic = BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic;
        internal const MethodAttributes PublicStatic = MethodAttributes.Public | MethodAttributes.Static;

        internal static Type GetNonNullableType(this Type type) {
            if (IsNullableType(type)) {
                return type.GetGenericArguments()[0];
            }
            return type;
        }

        internal static Type GetNullableType(Type type) {
            Debug.Assert(type != null, "type cannot be null");
            if (type.IsValueType && !IsNullableType(type)) {
                return typeof(Nullable<>).MakeGenericType(type);
            }
            return type;
        }

        internal static bool IsNullableType(this Type type) {
            return type.IsGenericType && type.GetGenericTypeDefinition() == typeof(Nullable<>);
        }

        internal static bool IsBool(Type type) {
            return GetNonNullableType(type) == typeof(bool);
        }

        internal static bool IsNumeric(Type type) {
            type = GetNonNullableType(type);
            if (!type.IsEnum) {
                switch (Type.GetTypeCode(type)) {
                    case TypeCode.Char:
                    case TypeCode.SByte:
                    case TypeCode.Byte:
                    case TypeCode.Int16:
                    case TypeCode.Int32:
                    case TypeCode.Int64:
                    case TypeCode.Double:
                    case TypeCode.Single:
                    case TypeCode.UInt16:
                    case TypeCode.UInt32:
                    case TypeCode.UInt64:
                        return true;
                }
            }
            return false;
        }

        internal static bool IsInteger(Type type) {
            type = GetNonNullableType(type);
            if (type.IsEnum) {
                return false;
            }
            switch (Type.GetTypeCode(type)) {
                case TypeCode.Byte:
                case TypeCode.SByte:
                case TypeCode.Int16:
                case TypeCode.Int32:
                case TypeCode.Int64:
                case TypeCode.UInt16:
                case TypeCode.UInt32:
                case TypeCode.UInt64:
                    return true;
                default:
                    return false;
            }
        }


        internal static bool IsArithmetic(Type type) {
            type = GetNonNullableType(type);
            if (!type.IsEnum) {
                switch (Type.GetTypeCode(type)) {
                    case TypeCode.Int16:
                    case TypeCode.Int32:
                    case TypeCode.Int64:
                    case TypeCode.Double:
                    case TypeCode.Single:
                    case TypeCode.UInt16:
                    case TypeCode.UInt32:
                    case TypeCode.UInt64:
                        return true;
                }
            }
            return false;
        }

        internal static bool IsUnsignedInt(Type type) {
            type = GetNonNullableType(type);
            if (!type.IsEnum) {
                switch (Type.GetTypeCode(type)) {
                    case TypeCode.UInt16:
                    case TypeCode.UInt32:
                    case TypeCode.UInt64:
                        return true;
                }
            }
            return false;
        }

        internal static bool IsIntegerOrBool(Type type) {
            type = GetNonNullableType(type);
            if (!type.IsEnum) {
                switch (Type.GetTypeCode(type)) {
                    case TypeCode.Int64:
                    case TypeCode.Int32:
                    case TypeCode.Int16:
                    case TypeCode.UInt64:
                    case TypeCode.UInt32:
                    case TypeCode.UInt16:
                    case TypeCode.Boolean:
                    case TypeCode.SByte:
                    case TypeCode.Byte:
                        return true;
                }
            }
            return false;
        }

        internal static bool AreEquivalent(Type t1, Type t2)
        {
#if CLR2 || SILVERLIGHT
            return t1 == t2;
#else
            return t1 == t2 || t1.IsEquivalentTo(t2);
#endif
        }

        internal static bool AreReferenceAssignable(Type dest, Type src) {
            // WARNING: This actually implements "Is this identity assignable and/or reference assignable?"
            if (AreEquivalent(dest, src)) {
                return true;
            }
            if (!dest.IsValueType && !src.IsValueType && dest.IsAssignableFrom(src)) {
                return true;
            }
            return false;
        }

        // Checks if the type is a valid target for an instance call
        internal static bool IsValidInstanceType(MemberInfo member, Type instanceType) {
            Type targetType = member.DeclaringType;
            if (AreReferenceAssignable(targetType, instanceType)) {
                return true;
            }
            if (instanceType.IsValueType) {
                if (AreReferenceAssignable(targetType, typeof(System.Object))) {
                    return true;
                }
                if (AreReferenceAssignable(targetType, typeof(System.ValueType))) {
                    return true;
                }
                if (instanceType.IsEnum && AreReferenceAssignable(targetType, typeof(System.Enum))) {
                    return true;
                }
                // A call to an interface implemented by a struct is legal whether the struct has
                // been boxed or not.
                if (targetType.IsInterface) {
                    foreach (Type interfaceType in instanceType.GetInterfaces()) {
                        if (AreReferenceAssignable(targetType, interfaceType)) {
                            return true;
                        }
                    }
                }
            }
            return false;
        }

        internal static bool HasIdentityPrimitiveOrNullableConversion(Type source, Type dest) {
            Debug.Assert(source != null && dest != null);

            // Identity conversion
            if (AreEquivalent(source, dest)) {
                return true;
            }

            // Nullable conversions
            if (IsNullableType(source) && AreEquivalent(dest, GetNonNullableType(source))) {
                return true;
            }
            if (IsNullableType(dest) && AreEquivalent(source, GetNonNullableType(dest))) {
                return true;
            }
            // Primitive runtime conversions
            // All conversions amongst enum, bool, char, integer and float types
            // (and their corresponding nullable types) are legal except for
            // nonbool==>bool and nonbool==>bool?
            // Since we have already covered bool==>bool, bool==>bool?, etc, above,
            // we can just disallow having a bool or bool? destination type here.
            if (IsConvertible(source) && IsConvertible(dest) && GetNonNullableType(dest) != typeof(bool)) {
                return true;
            }
            return false;
        }

        internal static bool HasReferenceConversion(Type source, Type dest) {
            Debug.Assert(source != null && dest != null);

            // void -> void conversion is handled elsewhere
            // (it's an identity conversion)
            // All other void conversions are disallowed.
            if (source == typeof(void) || dest == typeof(void)) {
                return false;
            }

            Type nnSourceType = TypeUtils.GetNonNullableType(source);
            Type nnDestType = TypeUtils.GetNonNullableType(dest);

            // Down conversion
            if (nnSourceType.IsAssignableFrom(nnDestType)) {
                return true;
            }
            // Up conversion
            if (nnDestType.IsAssignableFrom(nnSourceType)) {
                return true;
            }
            // Interface conversion
            if (source.IsInterface || dest.IsInterface) {
                return true;
            }
            // Variant delegate conversion
            if (IsLegalExplicitVariantDelegateConversion(source, dest))
                return true;
                
            // Object conversion
            if (source == typeof(object) || dest == typeof(object)) {
                return true;
            }
            return false;
        }

        private static bool IsCovariant(Type t)
        {
            Debug.Assert(t != null);
            return 0 != (t.GenericParameterAttributes & GenericParameterAttributes.Covariant);
        }

        private static bool IsContravariant(Type t)
        {
            Debug.Assert(t != null);
            return 0 != (t.GenericParameterAttributes & GenericParameterAttributes.Contravariant);
        }

        private static bool IsInvariant(Type t)
        {
            Debug.Assert(t != null);
            return 0 == (t.GenericParameterAttributes & GenericParameterAttributes.VarianceMask);
        }

        private static bool IsDelegate(Type t)
        {
            Debug.Assert(t != null);
            return t.IsSubclassOf(typeof(System.Delegate));
        }

        internal static bool IsLegalExplicitVariantDelegateConversion(Type source, Type dest)
        {
            Debug.Assert(source != null && dest != null);

            // There *might* be a legal conversion from a generic delegate type S to generic delegate type  T, 
            // provided all of the follow are true:
            //   o Both types are constructed generic types of the same generic delegate type, D<X1,... Xk>.
            //     That is, S = D<S1...>, T = D<T1...>.
            //   o If type parameter Xi is declared to be invariant then Si must be identical to Ti.
            //   o If type parameter Xi is declared to be covariant ("out") then Si must be convertible
            //     to Ti via an identify conversion,  implicit reference conversion, or explicit reference conversion.
            //   o If type parameter Xi is declared to be contravariant ("in") then either Si must be identical to Ti, 
            //     or Si and Ti must both be reference types.

            if (!IsDelegate(source) || !IsDelegate(dest) || !source.IsGenericType || !dest.IsGenericType)
                return false;

            Type genericDelegate = source.GetGenericTypeDefinition();

            if (dest.GetGenericTypeDefinition() != genericDelegate)
                return false;

            Type[] genericParameters = genericDelegate.GetGenericArguments();
            Type[] sourceArguments = source.GetGenericArguments();
            Type[] destArguments = dest.GetGenericArguments();

            Debug.Assert(genericParameters != null);
            Debug.Assert(sourceArguments != null);
            Debug.Assert(destArguments != null);
            Debug.Assert(genericParameters.Length == sourceArguments.Length);
            Debug.Assert(genericParameters.Length == destArguments.Length);

            for (int iParam = 0; iParam < genericParameters.Length; ++iParam)
            {
                Type sourceArgument = sourceArguments[iParam];
                Type destArgument = destArguments[iParam];

                Debug.Assert(sourceArgument != null && destArgument != null);
               
                // If the arguments are identical then this one is automatically good, so skip it.
                if (AreEquivalent(sourceArgument, destArgument))
                {
                    continue;
                }
                
                Type genericParameter = genericParameters[iParam];

                Debug.Assert(genericParameter != null);

                if (IsInvariant(genericParameter))
                {
                    return false;
                }
        
                if (IsCovariant(genericParameter))
                {
                    if (!HasReferenceConversion(sourceArgument, destArgument))
                    {
                        return false;
                    }
                }
                else if (IsContravariant(genericParameter))
                {
                    if (sourceArgument.IsValueType || destArgument.IsValueType)
                    {
                        return false;
                    }
                }
            }
            return true;
        }

        internal static bool IsConvertible(Type type) {
            type = GetNonNullableType(type);
            if (type.IsEnum) {
                return true;
            }
            switch (Type.GetTypeCode(type)) {
                case TypeCode.Boolean:
                case TypeCode.Byte:
                case TypeCode.SByte:
                case TypeCode.Int16:
                case TypeCode.Int32:
                case TypeCode.Int64:
                case TypeCode.UInt16:
                case TypeCode.UInt32:
                case TypeCode.UInt64:
                case TypeCode.Single:
                case TypeCode.Double:
                case TypeCode.Char:
                    return true;
                default:
                    return false;
            }
        }

        internal static bool HasReferenceEquality(Type left, Type right) {
            if (left.IsValueType || right.IsValueType) {
                return false;
            }

            // If we have an interface and a reference type then we can do 
            // reference equality.

            // If we have two reference types and one is assignable to the
            // other then we can do reference equality.

            return left.IsInterface || right.IsInterface ||
                AreReferenceAssignable(left, right) ||
                AreReferenceAssignable(right, left);
        }

        internal static bool HasBuiltInEqualityOperator(Type left, Type right) {
            // If we have an interface and a reference type then we can do 
            // reference equality.
            if (left.IsInterface && !right.IsValueType) {
                return true;
            }
            if (right.IsInterface && !left.IsValueType) {
                return true;
            }
            // If we have two reference types and one is assignable to the
            // other then we can do reference equality.
            if (!left.IsValueType && !right.IsValueType) {
                if (AreReferenceAssignable(left, right) || AreReferenceAssignable(right, left)) {
                    return true;
                }
            }
            // Otherwise, if the types are not the same then we definitely 
            // do not have a built-in equality operator.
            if (!AreEquivalent(left, right)) {
                return false;
            }
            // We have two identical value types, modulo nullability.  (If they were both the 
            // same reference type then we would have returned true earlier.)
            Debug.Assert(left.IsValueType);
            // Equality between struct types is only defined for numerics, bools, enums,
            // and their nullable equivalents.
            Type nnType = GetNonNullableType(left);
            if (nnType == typeof(bool) || IsNumeric(nnType) || nnType.IsEnum) {
                return true;
            }
            return false;
        }

        internal static bool IsImplicitlyConvertible(Type source, Type destination) {
            return AreEquivalent(source, destination) ||                // identity conversion
                IsImplicitNumericConversion(source, destination) ||
                IsImplicitReferenceConversion(source, destination) ||
                IsImplicitBoxingConversion(source, destination) ||
                IsImplicitNullableConversion(source, destination);
        }


        internal static MethodInfo GetUserDefinedCoercionMethod(Type convertFrom, Type convertToType, bool implicitOnly) {
            // check for implicit coercions first
            Type nnExprType = TypeUtils.GetNonNullableType(convertFrom);
            Type nnConvType = TypeUtils.GetNonNullableType(convertToType);
            // try exact match on types
            MethodInfo[] eMethods = nnExprType.GetMethods(BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic);
            MethodInfo method = FindConversionOperator(eMethods, convertFrom, convertToType, implicitOnly);
            if (method != null) {
                return method;
            }
            MethodInfo[] cMethods = nnConvType.GetMethods(BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic);
            method = FindConversionOperator(cMethods, convertFrom, convertToType, implicitOnly);
            if (method != null) {
                return method;
            }
            // try lifted conversion
            if (!TypeUtils.AreEquivalent(nnExprType, convertFrom) ||
                !TypeUtils.AreEquivalent(nnConvType, convertToType)) {
                method = FindConversionOperator(eMethods, nnExprType, nnConvType, implicitOnly);
                if (method == null) {
                    method = FindConversionOperator(cMethods, nnExprType, nnConvType, implicitOnly);
                }
                if (method != null) {
                    return method;
                }
            }
            return null;
        }

        internal static MethodInfo FindConversionOperator(MethodInfo[] methods, Type typeFrom, Type typeTo, bool implicitOnly) {
            foreach (MethodInfo mi in methods) {
                if (mi.Name != "op_Implicit" && (implicitOnly || mi.Name != "op_Explicit")) {
                    continue;
                }
                if (!TypeUtils.AreEquivalent(mi.ReturnType, typeTo)) {
                    continue;
                }
                ParameterInfo[] pis = mi.GetParametersCached();
                if (!TypeUtils.AreEquivalent(pis[0].ParameterType, typeFrom)) {
                    continue;
                }
                return mi;
            }
            return null;
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Maintainability", "CA1502:AvoidExcessiveComplexity")]
        private static bool IsImplicitNumericConversion(Type source, Type destination) {
            TypeCode tcSource = Type.GetTypeCode(source);
            TypeCode tcDest = Type.GetTypeCode(destination);

            switch (tcSource) {
                case TypeCode.SByte:
                    switch (tcDest) {
                        case TypeCode.Int16:
                        case TypeCode.Int32:
                        case TypeCode.Int64:
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.Byte:
                    switch (tcDest) {
                        case TypeCode.Int16:
                        case TypeCode.UInt16:
                        case TypeCode.Int32:
                        case TypeCode.UInt32:
                        case TypeCode.Int64:
                        case TypeCode.UInt64:
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.Int16:
                    switch (tcDest) {
                        case TypeCode.Int32:
                        case TypeCode.Int64:
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.UInt16:
                    switch (tcDest) {
                        case TypeCode.Int32:
                        case TypeCode.UInt32:
                        case TypeCode.Int64:
                        case TypeCode.UInt64:
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.Int32:
                    switch (tcDest) {
                        case TypeCode.Int64:
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.UInt32:
                    switch (tcDest) {
                        case TypeCode.UInt32:
                        case TypeCode.UInt64:
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.Int64:
                case TypeCode.UInt64:
                    switch (tcDest) {
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.Char:
                    switch (tcDest) {
                        case TypeCode.UInt16:
                        case TypeCode.Int32:
                        case TypeCode.UInt32:
                        case TypeCode.Int64:
                        case TypeCode.UInt64:
                        case TypeCode.Single:
                        case TypeCode.Double:
                        case TypeCode.Decimal:
                            return true;
                    }
                    return false;
                case TypeCode.Single:
                    return (tcDest == TypeCode.Double);
            }
            return false;
        }

        private static bool IsImplicitReferenceConversion(Type source, Type destination) {
            return destination.IsAssignableFrom(source);
        }

        private static bool IsImplicitBoxingConversion(Type source, Type destination) {
            if (source.IsValueType && (destination == typeof(object) || destination == typeof(System.ValueType)))
                return true;
            if (source.IsEnum && destination == typeof(System.Enum))
                return true;
            return false;
        }

        private static bool IsImplicitNullableConversion(Type source, Type destination) {
            if (IsNullableType(destination))
                return IsImplicitlyConvertible(GetNonNullableType(source), GetNonNullableType(destination));
            return false;
        }

        internal static bool IsSameOrSubclass(Type type, Type subType) {
            return AreEquivalent(type, subType) || subType.IsSubclassOf(type);
        }

        internal static void ValidateType(Type type) {
            if (type.IsGenericTypeDefinition) {
                throw Error.TypeIsGeneric(type);
            }
            if (type.ContainsGenericParameters) {
                throw Error.TypeContainsGenericParameters(type);
            }
        }

        //from TypeHelper
        internal static Type FindGenericType(Type definition, Type type) {
            while (type != null && type != typeof(object)) {
                if (type.IsGenericType && AreEquivalent(type.GetGenericTypeDefinition(), definition)) {
                    return type;
                }
                if (definition.IsInterface) {
                    foreach (Type itype in type.GetInterfaces()) {
                        Type found = FindGenericType(definition, itype);
                        if (found != null)
                            return found;
                    }
                }
                type = type.BaseType;
            }
            return null;
        }

        internal static bool IsUnsigned(Type type) {
            type = GetNonNullableType(type);
            switch (Type.GetTypeCode(type)) {
                case TypeCode.Byte:
                case TypeCode.UInt16:
                case TypeCode.Char:
                case TypeCode.UInt32:
                case TypeCode.UInt64:
                    return true;
                default:
                    return false;
            }
        }

        internal static bool IsFloatingPoint(Type type) {
            type = GetNonNullableType(type);
            switch (Type.GetTypeCode(type)) {
                case TypeCode.Single:
                case TypeCode.Double:
                    return true;
                default:
                    return false;
            }
        }

        /// <summary>
        /// Searches for an operator method on the type. The method must have
        /// the specified signature, no generic arguments, and have the
        /// SpecialName bit set. Also searches inherited operator methods.
        /// 
        /// NOTE: This was designed to satisfy the needs of op_True and
        /// op_False, because we have to do runtime lookup for those. It may
        /// not work right for unary operators in general.
        /// </summary>
        internal static MethodInfo GetBooleanOperator(Type type, string name) {
            do {
                MethodInfo result = type.GetMethodValidated(name, AnyStatic, null, new Type[] { type }, null);
                if (result != null && result.IsSpecialName && !result.ContainsGenericParameters) {
                    return result;
                }
                type = type.BaseType;
            } while (type != null);
            return null;
        }

        internal static Type GetNonRefType(this Type type) {
            return type.IsByRef ? type.GetElementType() : type;
        }

        private static readonly Assembly _mscorlib = typeof(object).Assembly;
        private static readonly Assembly _systemCore = typeof(Expression).Assembly;

        /// <summary>
        /// We can cache references to types, as long as they aren't in
        /// collectable assemblies. Unfortunately, we can't really distinguish
        /// between different flavors of assemblies. But, we can at least
        /// create a whitelist for types in mscorlib (so we get the primitives)
        /// and System.Core (so we find Func/Action overloads, etc).
        /// </summary>
        internal static bool CanCache(this Type t) {
            // Note: we don't have to scan base or declaring types here.
            // There's no way for a type in mscorlib to derive from or be
            // contained in a type from another assembly. The only thing we
            // need to look at is the generic arguments, which are the thing
            // that allows mscorlib types to be specialized by types in other
            // assemblies.

            var asm = t.Assembly;
            if (asm != _mscorlib && asm != _systemCore) {
                // Not in mscorlib or our assembly
                return false;
            }

            if (t.IsGenericType) {
                foreach (Type g in t.GetGenericArguments()) {
                    if (!CanCache(g)) {
                        return false;
                    }
                }
            }

            return true;
        }
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.