//
// System.Security.Cryptography.RC2CryptoServiceProvider.cs
//
// Authors:
// Andrew Birkett (andy@nobugs.org)
// Sebastien Pouliot (sebastien@ximian.com)
//
// Portions (C) 2002 Motus Technologies Inc. (http://www.motus.com)
// Copyright (C) 2004-2005 Novell, Inc (http://www.novell.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
using System.Globalization;
using System.Runtime.InteropServices;
using Mono.Security.Cryptography;
namespace System.Security.Cryptography{
// References:
// a. IETF RFC2286: A Description of the RC2(r) Encryption Algorithm
// http://www.ietf.org/rfc/rfc2268.txt
[ComVisible (true)]
public sealed class RC2CryptoServiceProvider : RC2 {
private bool _useSalt;
public RC2CryptoServiceProvider ()
{
}
public override int EffectiveKeySize {
get { return base.EffectiveKeySize; }
set {
if (value != KeySizeValue) {
throw new CryptographicUnexpectedOperationException (
Locale.GetText ("Effective key size must match key size for compatibility"));
}
base.EffectiveKeySize = value;
}
}
public override ICryptoTransform CreateDecryptor (byte[] rgbKey, byte[] rgbIV)
{
return new RC2Transform (this, false, rgbKey, rgbIV);
}
public override ICryptoTransform CreateEncryptor (byte[] rgbKey, byte[] rgbIV)
{
return new RC2Transform (this, true, rgbKey, rgbIV);
}
public override void GenerateIV ()
{
IVValue = KeyBuilder.IV (BlockSizeValue >> 3);
}
public override void GenerateKey ()
{
KeyValue = KeyBuilder.Key (KeySizeValue >> 3);
}
[MonoTODO ("Use salt in algorithm")]
[ComVisible (false)]
public bool UseSalt {
get { return _useSalt; }
set { _useSalt = value; }
}
}
internal class RC2Transform : SymmetricTransform {
private UInt16 R0, R1, R2, R3; // state
private UInt16[] K; // expanded key
private int j; // Key indexer
public RC2Transform (RC2 rc2Algo, bool encryption, byte[] key, byte[] iv)
: base (rc2Algo, encryption, iv)
{
#if ONLY_1_1
if (key == null)
throw new ArgumentNullException ("key");
#endif
int t1 = rc2Algo.EffectiveKeySize;
if (key == null) {
key = KeyBuilder.Key (rc2Algo.KeySize >> 3);
} else {
key = (byte[]) key.Clone ();
t1 = Math.Min (t1, key.Length << 3);
}
int t = key.Length;
if (!KeySizes.IsLegalKeySize (rc2Algo.LegalKeySizes, (t << 3))) {
string msg = Locale.GetText ("Key is too small ({0} bytes), it should be between {1} and {2} bytes long.",
t, 5, 16);
throw new CryptographicException (msg);
}
// Expand key into a byte array, then convert to word
// array since we always access the key in 16bit chunks.
byte[] L = new byte [128];
int t8 = ((t1 + 7) >> 3); // divide by 8
int tm = 255 % (2 << (8 + t1 - (t8 << 3) - 1));
for (int i=0; i < t; i++)
L [i] = key [i];
for (int i=t; i < 128; i++)
L [i] = (byte) (pitable [(L [i-1] + L [i-t]) & 0xff]);
L [128-t8] = pitable [L [128-t8] & tm];
for (int i=127-t8; i >= 0; i--)
L [i] = pitable [L [i+1] ^ L [i+t8]];
K = new UInt16 [64];
int pos = 0;
for (int i=0; i < 64; i++)
K [i] = (UInt16) (L [pos++] + (L [pos++] << 8));
}
protected override void ECB (byte[] input, byte[] output)
{
// unrolled loop, eliminated mul
R0 = (UInt16) (input [0] | (input [1] << 8));
R1 = (UInt16) (input [2] | (input [3] << 8));
R2 = (UInt16) (input [4] | (input [5] << 8));
R3 = (UInt16) (input [6] | (input [7] << 8));
if (encrypt) {
j = 0;
// inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix();
while (j <= 16) {
R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1));
R0 = (UInt16) ((R0 << 1) | (R0 >> 15));
R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2));
R1 = (UInt16) ((R1 << 2) | (R1 >> 14));
R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3));
R2 = (UInt16) ((R2 << 3) | (R2 >> 13));
R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0));
R3 = (UInt16) ((R3 << 5) | (R3 >> 11));
}
// inline Mash(); j == 20
R0 += K [R3 & 63];
R1 += K [R0 & 63];
R2 += K [R1 & 63];
R3 += K [R2 & 63];
// inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix(); Mix();
while (j <= 40) {
R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1));
R0 = (UInt16) ((R0 << 1) | (R0 >> 15));
R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2));
R1 = (UInt16) ((R1 << 2) | (R1 >> 14));
R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3));
R2 = (UInt16) ((R2 << 3) | (R2 >> 13));
R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0));
R3 = (UInt16) ((R3 << 5) | (R3 >> 11));
}
// inline Mash(); j == 44
R0 += K [R3 & 63];
R1 += K [R0 & 63];
R2 += K [R1 & 63];
R3 += K [R2 & 63];
// inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix();
while (j < 64) {
R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1));
R0 = (UInt16) ((R0 << 1) | (R0 >> 15));
R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2));
R1 = (UInt16) ((R1 << 2) | (R1 >> 14));
R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3));
R2 = (UInt16) ((R2 << 3) | (R2 >> 13));
R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0));
R3 = (UInt16) ((R3 << 5) | (R3 >> 11));
}
}
else {
j = 63;
// inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix();
while (j >= 44) {
R3 = (UInt16) ((R3 >> 5) | (R3 << 11));
R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0));
R2 = (UInt16) ((R2 >> 3) | (R2 << 13));
R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3));
R1 = (UInt16) ((R1 >> 2) | (R1 << 14));
R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2));
R0 = (UInt16) ((R0 >> 1) | (R0 << 15));
R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1));
}
// inline RMash();
R3 -= K [R2 & 63];
R2 -= K [R1 & 63];
R1 -= K [R0 & 63];
R0 -= K [R3 & 63];
// inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix(); RMix();
while (j >= 20) {
R3 = (UInt16) ((R3 >> 5) | (R3 << 11));
R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0));
R2 = (UInt16) ((R2 >> 3) | (R2 << 13));
R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3));
R1 = (UInt16) ((R1 >> 2) | (R1 << 14));
R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2));
R0 = (UInt16) ((R0 >> 1) | (R0 << 15));
R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1));
}
// inline RMash();
R3 -= K [R2 & 63];
R2 -= K [R1 & 63];
R1 -= K [R0 & 63];
R0 -= K [R3 & 63];
// inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix();
while (j >= 0) {
R3 = (UInt16) ((R3 >> 5) | (R3 << 11));
R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0));
R2 = (UInt16) ((R2 >> 3) | (R2 << 13));
R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3));
R1 = (UInt16) ((R1 >> 2) | (R1 << 14));
R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2));
R0 = (UInt16) ((R0 >> 1) | (R0 << 15));
R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1));
}
}
// unrolled loop
output[0] = (byte) R0;
output[1] = (byte) (R0 >> 8);
output[2] = (byte) R1;
output[3] = (byte) (R1 >> 8);
output[4] = (byte) R2;
output[5] = (byte) (R2 >> 8);
output[6] = (byte) R3;
output[7] = (byte) (R3 >> 8);
}
static readonly byte[] pitable = {
0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed,
0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13,
0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b,
0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1,
0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57,
0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7,
0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74,
0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a,
0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae,
0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0,
0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77,
0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad
};
}
}
|