SymmetricKeyWrap.cs :  » 2.6.4-mono-.net-core » System.Security » System » Security » Cryptography » Xml » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » 2.6.4 mono .net core » System.Security 
System.Security » System » Security » Cryptography » Xml » SymmetricKeyWrap.cs
//
// SymmetricKeyWrap.cs - Implements symmetric key wrap algorithms
//
// Author:
//      Tim Coleman (tim@timcoleman.com)
//
// Copyright (C) Tim Coleman, 2004
//

//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
// 
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//

#if NET_2_0

using System.IO;
using System.Security.Cryptography;

namespace System.Security.Cryptography.Xml{ 

  internal class SymmetricKeyWrap {

    public SymmetricKeyWrap ()
    {
    }

    public static byte[] AESKeyWrapEncrypt (byte[] rgbKey, byte[] rgbWrappedKeyData)
    {
      SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("Rijndael");

      // Apparently no one felt the need to document that this requires Electronic Codebook mode.
      symAlg.Mode = CipherMode.ECB;

      // This was also not documented anywhere.
      symAlg.IV = new byte [16] {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
  
      ICryptoTransform transform = symAlg.CreateEncryptor (rgbKey, symAlg.IV);

      int N = rgbWrappedKeyData.Length / 8;
      byte[] A;
      byte[] B = new Byte [16];
      byte [] C = new byte [8 * (N + 1)];

      // 1. if N is 1:
      //       B = AES(K)enc(0xA6A6A6A6A6A6A6A6|P(1))
      //       C(0) = MSB(B)
      //       C(1) = LSB(B)
      if (N == 1) {
        A = new byte [8] {0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6};
        transform.TransformBlock (Concatenate (A, rgbWrappedKeyData), 0, 16, B, 0);
        Buffer.BlockCopy (MSB(B), 0, C, 0, 8);
        Buffer.BlockCopy (LSB(B), 0, C, 8, 8);
      } else {
        // if N > 1, perform the following steps:
        // 2. Initialize variables:
        //       Set A to 0xA6A6A6A6A6A6A6A6
        //       For i = 1 to N,
        //          R(i) = P(i)
        A = new byte [8] {0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6};
  
        byte[][] R = new byte [N + 1][];
        for (int i = 1; i <= N; i += 1) {
          R [i] = new byte [8];
          Buffer.BlockCopy (rgbWrappedKeyData, 8 * (i - 1), R [i], 0, 8);
        }

        // 3. Calculate intermediate values:
        //       For j = 0 to 5
        //          For i = 1 to N
        //             t = i + j * N
        //             B = AES(K)enc(A|R(i))
        //             A = XOR(t, MSB(B))
        //             R(i) = LSB(B)

        for (int j = 0; j <= 5; j += 1) {
          for (int i = 1; i <= N; i += 1) {
            transform.TransformBlock (Concatenate (A, R [i]), 0, 16, B, 0);
  
            // Yawn.  It was nice of those at NIST to document how exactly we should XOR 
            // an integer value with a byte array.  Not.
            byte[] T = BitConverter.GetBytes ((long) (N * j + i));

            // This is nice.
            if (BitConverter.IsLittleEndian)
              Array.Reverse (T);

            A = Xor (T, MSB(B));
            R [i] = LSB (B);
          }
        }

        // 4. Output the results:
        //       Set C(0) = A
        //       For i = 1 to N
        //          C(i) = R(i)
        Buffer.BlockCopy (A, 0, C, 0, 8);
        for (int i = 1; i <= N; i += 1)
          Buffer.BlockCopy (R [i], 0, C, 8 * i, 8);
      }
      return C;
    }

    public static byte[] AESKeyWrapDecrypt (byte[] rgbKey, byte[] rgbEncryptedWrappedKeyData)
    {
      SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("Rijndael");
      symAlg.Mode = CipherMode.ECB;
      symAlg.Key = rgbKey;

      int N = ( rgbEncryptedWrappedKeyData.Length / 8 ) - 1;

      // From RFC 3394 - Advanced Encryption Standard (AES) Key Wrap Algorithm
      //
      // Inputs: Ciphertext, (n+1) 64-bit values (C0, C1, ..., Cn), and Key, K (the KEK)
      // Outputs: Plaintext, n 64-bit values (P1, P2, ..., Pn)
      //
      // 1. Initialize variables.
      //    Set A = C[0] 

      byte[] A = new byte [8];
      Buffer.BlockCopy (rgbEncryptedWrappedKeyData, 0, A, 0, 8);

      //    For i = 1 to n
      //    R[i] = C[i]

      byte[] R = new byte [N * 8];
      Buffer.BlockCopy (rgbEncryptedWrappedKeyData, 8, R, 0, rgbEncryptedWrappedKeyData.Length - 8);

      // 2. Compute intermediate values.
      //    For j = 5 to 0
      //       For i = n to 1
      //          B = AES-1(K, (A^t) | R[i]) where t = n*j+i
      //          A = MSB (64,B)
      //          R[i] = LSB (64,B)

      ICryptoTransform transform = symAlg.CreateDecryptor ();

      for (int j = 5; j >= 0; j -= 1) {
        for (int i = N; i >= 1; i -= 1) {
          byte[] T = BitConverter.GetBytes ((long) N * j + i);
          if (BitConverter.IsLittleEndian)
            Array.Reverse (T);

          byte[] B = new Byte [16];
          byte[] r = new Byte [8];
          Buffer.BlockCopy (R, 8 * (i - 1), r, 0, 8);
          byte[] ciphertext = Concatenate (Xor (A, T), r);
          transform.TransformBlock (ciphertext, 0, 16, B, 0);
          A = MSB (B);
          Buffer.BlockCopy (LSB (B), 0, R, 8 * (i - 1), 8);
        }
      }

      // 3. Output results
      //    If A is an appropriate initial value
      //    Then
      //       For i = 1 to n
      //          P[i] = R[i]
      //    Else
      //       Return an error

      return R;
    }

    public static byte[] TripleDESKeyWrapEncrypt (byte[] rgbKey, byte[] rgbWrappedKeyData)
    {
      SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("TripleDES");

      // Algorithm from http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap
      // The following algorithm wraps (encrypts) a key (the wrapped key, WK) under a TRIPLEDES
      // key-encryption-key (KEK) as adopted from [CMS-Algorithms].

      // 1. Represent the key being wrapped as an octet sequence. If it is a TRIPLEDES key, 
      //    this is 24 octets (192 bits) with odd parity bit as the bottom bit of each octet.

      // rgbWrappedKeyData is the key being wrapped.

      // 2. Compute the CMS key checksum (Section 5.6.1) call this CKS.

      byte[] cks = ComputeCMSKeyChecksum (rgbWrappedKeyData);

      // 3. Let WKCKS = WK || CKS, where || is concatenation.

      byte[] wkcks = Concatenate (rgbWrappedKeyData, cks);

      // 4. Generate 8 random octets and call this IV.
      symAlg.GenerateIV ();

      // 5. Encrypt WKCKS in CBC mode using KEK as the key and IV as the initialization vector.
      //    Call the results TEMP1.

      symAlg.Mode = CipherMode.CBC;
      symAlg.Padding = PaddingMode.None;
      symAlg.Key = rgbKey;
      byte[] temp1 = Transform (wkcks, symAlg.CreateEncryptor ());

      // 6. Let TEMP2 = IV || TEMP1.

      byte[] temp2 = Concatenate (symAlg.IV, temp1);

      // 7. Reverse the order of the octets in TEMP2 and call the result TEMP3.

      Array.Reverse (temp2); // TEMP3 is TEMP2

      // 8. Encrypt TEMP3 in CBC mode using the KEK and an initialization vector of 0x4adda22c79e82105. 
      //    The resulting cipher text is the desired result.  It is 40 octets long if a 168 bit key
      //    is being wrapped.

      symAlg.IV = new Byte [8] {0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05};

      byte[] rtnval = Transform (temp2, symAlg.CreateEncryptor ());

      return rtnval;
    }

    public static byte[] TripleDESKeyWrapDecrypt (byte[] rgbKey, byte[] rgbEncryptedWrappedKeyData)
    {
      SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("TripleDES");

      // Algorithm from http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap
      // The following algorithm unwraps (decrypts) a key as adopted from [CMS-Algorithms].

      // 1. Check the length of the cipher text is reasonable given the key type.  It must be
      //    40 bytes for a 168 bit key and either 32, 40, or 48 bytes for a 128, 192, or 256 bit
      //    key. If the length is not supported or inconsistent with the algorithm for which the
      //    key is intended, return error.

      // 2. Decrypt the cipher text with TRIPLEDES in CBC mode using the KEK and an initialization
      //    vector (IV) of 0x4adda22c79e82105.  Call the output TEMP3.

      symAlg.Mode = CipherMode.CBC;
      symAlg.Padding = PaddingMode.None;
      symAlg.Key = rgbKey;
      symAlg.IV = new Byte [8] {0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05};

      byte[] temp3 = Transform (rgbEncryptedWrappedKeyData, symAlg.CreateDecryptor ());

      // 3. Reverse the order of the octets in TEMP3 and call the result TEMP2.

      Array.Reverse (temp3); // TEMP2 is TEMP3.

      // 4. Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining octets.

      byte[] temp1 = new Byte [temp3.Length - 8];
      byte[] iv = new Byte [8];

      Buffer.BlockCopy (temp3, 0, iv, 0, 8);
      Buffer.BlockCopy (temp3, 8, temp1, 0, temp1.Length);

      // 5. Decrypt TEMP1 using TRIPLEDES in CBC mode using the KEK and the IV found in the previous step.
      //    Call the result WKCKS.

      symAlg.IV = iv;
      byte[] wkcks = Transform (temp1, symAlg.CreateDecryptor ());

      // 6. Decompose WKCKS.  CKS is the last 8 octets and WK, the wrapped key, are those octets before
      //    the CKS.

      byte[] cks = new byte [8];
      byte[] wk = new byte [wkcks.Length - 8];

      Buffer.BlockCopy (wkcks, 0, wk, 0, wk.Length);
      Buffer.BlockCopy (wkcks, wk.Length, cks, 0, 8);

      // 7. Calculate the CMS key checksum over the WK and compare with the CKS extracted in the above
      //    step. If they are not equal, return error.

      // 8. WK is the wrapped key, now extracted for use in data decryption.
      return wk;
    }

    private static byte[] Transform (byte[] data, ICryptoTransform t)
    {
      MemoryStream output = new MemoryStream ();
      CryptoStream crypto = new CryptoStream (output, t, CryptoStreamMode.Write);

      crypto.Write (data, 0, data.Length);
      crypto.FlushFinalBlock ();

      byte[] result = output.ToArray ();
      
      output.Close ();
      crypto.Close ();

      return result; 
                }

    private static byte[] ComputeCMSKeyChecksum (byte[] data)
    {
      byte[] hash = HashAlgorithm.Create ("SHA1").ComputeHash (data);
      byte[] output = new byte [8];

      Buffer.BlockCopy (hash, 0, output, 0, 8);

      return output;
    }

    private static byte[] Concatenate (byte[] buf1, byte[] buf2)
    {
      byte[] output = new byte [buf1.Length + buf2.Length];
      Buffer.BlockCopy (buf1, 0, output, 0, buf1.Length);
      Buffer.BlockCopy (buf2, 0, output, buf1.Length, buf2.Length);
      return output;
    }

    private static byte[] MSB (byte[] input)
    {
      return MSB (input, 8);
    }

    private static byte[] MSB (byte[] input, int bytes)
    {
      byte[] output = new byte [bytes];
      Buffer.BlockCopy (input, 0, output, 0, bytes);
      return output;
    }

    private static byte[] LSB (byte[] input)
    {
      return LSB (input, 8);
    }

    private static byte[] LSB (byte[] input, int bytes)
    {
      byte[] output = new byte [bytes];
      Buffer.BlockCopy (input, bytes, output, 0, bytes);
      return output;
    }

    private static byte[] Xor (byte[] x, byte[] y)
    {
      // This should *not* happen.
      if (x.Length != y.Length)
        throw new CryptographicException ("Error performing Xor: arrays different length.");

      byte[] output = new byte [x.Length];
      for (int i = 0; i < x.Length; i += 1)
        output [i] = (byte) (x [i] ^ y [i]);
      return output;
    }

/*    private static byte[] Xor (byte[] x, int n)
    {
      byte[] output = new Byte [x.Length];
      for (int i = 0; i < x.Length; i += 1)
        output [i] = (byte) ((int) x [i] ^ n);
      return output;
    }*/
  }
}

#endif
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.