LineIntersector.cs :  » GIS » DeepEarth » GisSharpBlog » NetTopologySuite » Algorithm » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » GIS » DeepEarth 
DeepEarth » GisSharpBlog » NetTopologySuite » Algorithm » LineIntersector.cs
using System;
using System.Text;
using GeoAPI.Geometries;
using GisSharpBlog.NetTopologySuite.Geometries;
using GisSharpBlog.NetTopologySuite.Utilities;

namespace GisSharpBlog.NetTopologySuite.Algorithm{
    /// <summary> 
    /// A LineIntersector is an algorithm that can both test whether
    /// two line segments intersect and compute the intersection point
    /// if they do.
    /// The intersection point may be computed in a precise or non-precise manner.
    /// Computing it precisely involves rounding it to an integer.  (This assumes
    /// that the input coordinates have been made precise by scaling them to
    /// an integer grid.)
    /// </summary>
    public abstract class LineIntersector 
    {
        /// <summary>
        /// 
        /// </summary>
        public const int DontIntersect = 0;
        
        /// <summary>
        /// 
        /// </summary>
        public const int DoIntersect = 1;
        
        /// <summary>
        /// 
        /// </summary>
        public const int Collinear = 2;

        /// <summary> 
        /// Computes the "edge distance" of an intersection point p along a segment.
        /// The edge distance is a metric of the point along the edge.
        /// The metric used is a robust and easy to compute metric function.
        /// It is not equivalent to the usual Euclidean metric.
        /// It relies on the fact that either the x or the y ordinates of the
        /// points in the edge are unique, depending on whether the edge is longer in
        /// the horizontal or vertical direction.
        /// NOTE: This function may produce incorrect distances
        /// for inputs where p is not precisely on p1-p2
        /// (E.g. p = (139,9) p1 = (139,10), p2 = (280,1) produces distanct 0.0, which is incorrect.
        /// My hypothesis is that the function is safe to use for points which are the
        /// result of rounding points which lie on the line, but not safe to use for truncated points.
        /// </summary>
        public static double ComputeEdgeDistance(ICoordinate p, ICoordinate p0, ICoordinate p1)
        {
            double dx = Math.Abs(p1.X - p0.X);
            double dy = Math.Abs(p1.Y - p0.Y);

            double dist = -1.0;   // sentinel value
            if (p.Equals(p0)) 
                dist = 0.0;            
            else if (p.Equals(p1)) 
            {
                if (dx > dy)
                     dist = dx;
                else dist = dy;
            }
            else 
            {
                double pdx = Math.Abs(p.X - p0.X);
                double pdy = Math.Abs(p.Y - p0.Y);
                if (dx > dy)
                     dist = pdx;
                else dist = pdy;

                // <FIX>: hack to ensure that non-endpoints always have a non-zero distance
                if (dist == 0.0 && ! p.Equals(p0))                
                    dist = Math.Max(pdx, pdy);
                
            }
            Assert.IsTrue(!(dist == 0.0 && ! p.Equals(p0)), "Bad distance calculation");
            return dist;
        }

        /// <summary>
        /// This function is non-robust, since it may compute the square of large numbers.
        /// Currently not sure how to improve this.
        /// </summary>
        /// <param name="p"></param>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <returns></returns>
        public static double NonRobustComputeEdgeDistance(ICoordinate p, ICoordinate p1, ICoordinate p2)
        {
            double dx = p.X - p1.X;
            double dy = p.Y - p1.Y;
            double dist = Math.Sqrt(dx * dx + dy * dy);   // dummy value
            Assert.IsTrue(! (dist == 0.0 && ! p.Equals(p1)), "Invalid distance calculation");
            return dist;
        }

        /// <summary>
        /// 
        /// </summary>
        protected int result;
        
        /// <summary>
        /// 
        /// </summary>
        protected ICoordinate[,] inputLines = new ICoordinate[2, 2];
        
        /// <summary>
        /// 
        /// </summary>
        protected ICoordinate[] intPt = new ICoordinate[2];

        /// <summary> 
        /// The indexes of the endpoints of the intersection lines, in order along
        /// the corresponding line
        /// </summary>
        protected int[,] intLineIndex;

        /// <summary>
        /// 
        /// </summary>
        protected bool isProper;
        
        /// <summary>
        /// 
        /// </summary>
        protected ICoordinate pa;
        
        /// <summary>
        /// 
        /// </summary>
        protected ICoordinate pb;

        /// <summary> 
        /// If MakePrecise is true, computed intersection coordinates will be made precise
        /// using <c>Coordinate.MakePrecise</c>.
        /// </summary>
        protected IPrecisionModel precisionModel = null;

        /// <summary>
        /// 
        /// </summary>
        public LineIntersector() 
        {
            intPt[0] = new Coordinate();
            intPt[1] = new Coordinate();
            // alias the intersection points for ease of reference
            pa = intPt[0];
            pb = intPt[1];
            result = 0;
        }

        /// <summary>
        /// Force computed intersection to be rounded to a given precision model
        /// </summary>        
        [Obsolete("Use PrecisionModel instead")]
        public IPrecisionModel MakePrecise
        {            
            set
            {
                precisionModel = value;
            }
        }

        /// <summary> 
        /// Force computed intersection to be rounded to a given precision model.
        /// No getter is provided, because the precision model is not required to be specified.
        /// </summary>
        public IPrecisionModel PrecisionModel
        {            
            set
            {
                this.precisionModel = value;
            }
        }

        /// <summary> 
        /// Compute the intersection of a point p and the line p1-p2.
        /// This function computes the bool value of the hasIntersection test.
        /// The actual value of the intersection (if there is one)
        /// is equal to the value of <c>p</c>.
        /// </summary>
        public abstract void ComputeIntersection(ICoordinate p, ICoordinate p1, ICoordinate p2);

        /// <summary>
        /// 
        /// </summary>
        protected bool IsCollinear 
        {
            get
            {
                return result == Collinear;
            }
        }

        /// <summary>
        /// Computes the intersection of the lines p1-p2 and p3-p4.
        /// This function computes both the bool value of the hasIntersection test
        /// and the (approximate) value of the intersection point itself (if there is one).
        /// </summary>
        public void ComputeIntersection(ICoordinate p1, ICoordinate p2, ICoordinate p3, ICoordinate p4) 
        {
            inputLines[0,0] = p1;
            inputLines[0,1] = p2;
            inputLines[1,0] = p3;
            inputLines[1,1] = p4;
            result = ComputeIntersect(p1, p2, p3, p4);        
        }

        /// <summary>
        /// 
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <param name="q1"></param>
        /// <param name="q2"></param>
        /// <returns></returns>
        public abstract int ComputeIntersect(ICoordinate p1, ICoordinate p2, ICoordinate q1, ICoordinate q2);
        
        /// <summary>
        /// 
        /// </summary>
        /// <returns></returns>
        public override string ToString() 
        {
            StringBuilder sb = new StringBuilder();
            sb.Append(inputLines[0, 0]).Append("-");
            sb.Append(inputLines[0, 1]).Append(" ");
            sb.Append(inputLines[1, 0]).Append("-");
            sb.Append(inputLines[1, 1]).Append(" : ");

            if (IsEndPoint)  sb.Append(" endpoint");
            if (isProper)    sb.Append(" proper");
            if (IsCollinear) sb.Append(" collinear");

            return sb.ToString();                        
        }

        /// <summary>
        /// 
        /// </summary>
        protected bool IsEndPoint 
        {
            get
            {
                return HasIntersection && !isProper;
            }
        }

        /// <summary> 
        /// Tests whether the input geometries intersect.
        /// </summary>
        /// <returns><c>true</c> if the input geometries intersect.</returns>
        public bool HasIntersection
        {
            get
            {
                return result != DontIntersect;
            }
        }

        /// <summary>
        /// Returns the number of intersection points found.  This will be either 0, 1 or 2.
        /// </summary>
        public int IntersectionNum
        {
            get 
            { 
                return result; 
            }
        }

        /// <summary> 
        /// Returns the intIndex'th intersection point.
        /// </summary>
        /// <param name="intIndex">is 0 or 1.</param>
        /// <returns>The intIndex'th intersection point.</returns>
        public ICoordinate GetIntersection(int intIndex)  
        { 
            return intPt[intIndex]; 
        }

        /// <summary>
        /// 
        /// </summary>
        protected void ComputeIntLineIndex() 
        {
            if (intLineIndex == null) 
            {
                intLineIndex = new int[2, 2];
                ComputeIntLineIndex(0);
                ComputeIntLineIndex(1);
            }
        }

        /// <summary> 
        /// Test whether a point is a intersection point of two line segments.
        /// Note that if the intersection is a line segment, this method only tests for
        /// equality with the endpoints of the intersection segment.
        /// It does not return true if the input point is internal to the intersection segment.
        /// </summary>
        /// <returns><c>true</c> if the input point is one of the intersection points.</returns>
        public bool IsIntersection(ICoordinate pt) 
        {
            for (int i = 0; i < result; i++) 
                if (intPt[i].Equals2D(pt)) 
                    return true;                        
            return false;
        }

        /// <summary> 
        /// Tests whether either intersection point is an interior point of one of the input segments.
        /// </summary>
        /// <returns>
        /// <c>true</c> if either intersection point is in the interior of one of the input segment.
        /// </returns>
        public bool IsInteriorIntersection()
        {
            if (IsInteriorIntersection(0)) 
                return true;
            if (IsInteriorIntersection(1)) 
                return true;
            return false;
        }

        /// <summary>
        /// Tests whether either intersection point is an interior point of the specified input segment.
        /// </summary>
        /// <returns> 
        /// <c>true</c> if either intersection point is in the interior of the input segment.
        /// </returns>
        public bool IsInteriorIntersection(int inputLineIndex)
        {
            for (int i = 0; i < result; i++)
                if (!(intPt[i].Equals2D(inputLines[inputLineIndex, 0]) || 
                      intPt[i].Equals2D(inputLines[inputLineIndex, 1])))                                   
                    return true;                
            return false;
        }

        /// <summary>
        /// Tests whether an intersection is proper.
        /// The intersection between two line segments is considered proper if
        /// they intersect in a single point in the interior of both segments
        /// (e.g. the intersection is a single point and is not equal to any of the endpoints). 
        /// The intersection between a point and a line segment is considered proper
        /// if the point lies in the interior of the segment (e.g. is not equal to either of the endpoints).
        /// </summary>
        /// <returns><c>true</c>  if the intersection is proper.</returns>
        public bool IsProper 
        {
            get
            {
                return HasIntersection && isProper;
            }
        }

        /// <summary> 
        /// Computes the intIndex'th intersection point in the direction of
        /// a specified input line segment.
        /// </summary>
        /// <param name="segmentIndex">is 0 or 1.</param>
        /// <param name="intIndex">is 0 or 1.</param>
        /// <returns>
        /// The intIndex'th intersection point in the direction of the specified input line segment.
        /// </returns>
        public ICoordinate GetIntersectionAlongSegment(int segmentIndex, int intIndex) 
        {
            // lazily compute int line array
            ComputeIntLineIndex();
            return intPt[intLineIndex[segmentIndex, intIndex]];
        }

        /// <summary>
        /// Computes the index of the intIndex'th intersection point in the direction of
        /// a specified input line segment.
        /// </summary>
        /// <param name="segmentIndex">is 0 or 1.</param>
        /// <param name="intIndex">is 0 or 1.</param>
        /// <returns>
        /// The index of the intersection point along the segment (0 or 1).
        /// </returns>
        public int GetIndexAlongSegment(int segmentIndex, int intIndex) 
        {
            ComputeIntLineIndex();
            return intLineIndex[segmentIndex, intIndex];
        }

        /// <summary>
        /// 
        /// </summary>
        /// <param name="segmentIndex"></param>
        protected void ComputeIntLineIndex(int segmentIndex) 
        {
            double dist0 = GetEdgeDistance(segmentIndex, 0);
            double dist1 = GetEdgeDistance(segmentIndex, 1);
            if (dist0 > dist1) 
            {
                intLineIndex[segmentIndex, 0] = 0;
                intLineIndex[segmentIndex, 1] = 1;
            }
            else
            {
                intLineIndex[segmentIndex, 0] = 1;
                intLineIndex[segmentIndex, 1] = 0;
            }
        }

        /// <summary> 
        /// Computes the "edge distance" of an intersection point along the specified input line segment.
        /// </summary>
        /// <param name="segmentIndex">is 0 or 1.</param>
        /// <param name="intIndex">is 0 or 1.</param>
        /// <returns>The edge distance of the intersection point.</returns>
        public double GetEdgeDistance(int segmentIndex, int intIndex) 
        {
            double dist = ComputeEdgeDistance(intPt[intIndex], inputLines[segmentIndex, 0], inputLines[segmentIndex, 1]);
            return dist;
        }
    }
}
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.