Rijndael.cs :  » Network-Clients » Granados » Routrek » Crypto » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Network Clients » Granados 
Granados » Routrek » Crypto » Rijndael.cs
/* ---------------------------------------------------------------------------
 *
 * Copyright (c) Routrek Networks, Inc.    All Rights Reserved..
 * 
 * This file is a part of the Granados SSH Client Library that is subject to
 * the license included in the distributed package.
 * You may not use this file except in compliance with the license.
 * 
 * ---------------------------------------------------------------------------
 * 
 * Rijndael was written by <a href="mailto:rijmen@esat.kuleuven.ac.be">Vincent
 * Rijmen</a> and <a href="mailto:Joan.Daemen@village.uunet.be">Joan Daemen</a>.
 * 
 * ---------------------------------------------------------------------------
 * 
 * I implemented this algorithm with reference to following products though the algorithm is known publicly.
 *   * MindTerm ( AppGate Network Security )
 */
using System;

namespace Routrek.Crypto{
  public class Rijndael
  {
    byte[] _IV;
    int[][] _Ke;      // encryption round keys
    int[][] _Kd;      // decryption round keys
    private int _rounds;

    public Rijndael() {
      _IV = new byte[GetBlockSize()];
    }

    public int GetBlockSize() {
      return BLOCK_SIZE;
    }

    ///////////////////////////////////////////////
    // set _IV
    ///////////////////////////////////////////////
    public void SetIV(byte[] newiv) {
      Array.Copy(newiv, 0, _IV, 0, _IV.Length);
    }

    ///////////////////////////////////////////////
    // set KEY
    ///////////////////////////////////////////////
    public void InitializeKey(byte[] key) {
      if (key == null)
        throw new Exception("Empty key");
      //128bit or 192bit or 256bit
      if (!(key.Length == 16 || key.Length == 24 || key.Length == 32))
        throw new Exception("Incorrect key length");

      _rounds = getRounds(key.Length, GetBlockSize());
      _Ke = new int[_rounds + 1][]; 
      _Kd = new int[_rounds + 1][]; 
      int i, j;
      for(i=0; i<_rounds + 1; i++) {
        _Ke[i] = new int[BC];
        _Kd[i] = new int[BC];
      }

      int ROUND_KEY_COUNT = (_rounds + 1) * BC;
      int KC = key.Length / 4;
      int[] tk = new int[KC];

      for (i = 0, j = 0; i < KC; ) {
        tk[i++] = (key[j++] & 0xFF) << 24 |
                  (key[j++] & 0xFF) << 16 |
                  (key[j++] & 0xFF) <<  8 |
                  (key[j++] & 0xFF);
      }

      int t = 0;
      for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
        _Ke[t / BC][t % BC] = tk[j];
        _Kd[_rounds - (t / BC)][t % BC] = tk[j];
      }
      int tt, rconpointer = 0;
      while (t < ROUND_KEY_COUNT) {
        tt = tk[KC - 1];
        tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^
                 (S[(tt >>  8) & 0xFF] & 0xFF) << 16 ^
                 (S[ tt         & 0xFF] & 0xFF) <<  8 ^
                 (S[(tt >> 24) & 0xFF] & 0xFF)       ^
                 (rcon[rconpointer++]  & 0xFF) << 24;

        if (KC != 8) {
          for (i = 1, j = 0; i < KC; )
            tk[i++] ^= tk[j++];
        }
        else {
          for (i = 1, j = 0; i < KC / 2; )
            tk[i++] ^= tk[j++];
          tt = tk[KC / 2 - 1];
          tk[KC / 2] ^= (S[ tt        & 0xFF] & 0xFF)       ^
                        (S[(tt >>  8) & 0xFF] & 0xFF) <<  8 ^
                  (S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^
                  (S[(tt >> 24) & 0xFF] & 0xFF) << 24;
          for (j = KC / 2, i = j + 1; i < KC; )
            tk[i++] ^= tk[j++];
        }
        for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
          _Ke[t / BC][t % BC] = tk[j];
          _Kd[_rounds - (t / BC)][t % BC] = tk[j];
        }
      }
      for (int r = 1; r < _rounds; r++){
        for (j = 0; j < BC; j++) {
          tt = _Kd[r][j];
          _Kd[r][j] = U1[(tt >> 24) & 0xFF] ^
                    U2[(tt >> 16) & 0xFF] ^
                 U3[(tt >>  8) & 0xFF] ^
                 U4[ tt        & 0xFF];
        }
      }
    }

    public static int getRounds(int keySize, int blockSize) {
      switch (keySize) {
        case 16:
          return blockSize == 16 ? 10 : (blockSize == 24 ? 12 : 14);
        case 24:
          return blockSize != 32 ? 12 : 14;
        default: 
          return 14;
      }
    }

    public void encryptCBC(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) {
      int block_size = GetBlockSize();
      int nBlocks = inputLen / block_size;
      for(int bc = 0; bc < nBlocks; bc++) {
        CipherUtil.BlockXor(input, inputOffset, block_size, _IV, 0);
        blockEncrypt(_IV, 0, output, outputOffset);
        Array.Copy(output, outputOffset, _IV, 0, block_size);
        inputOffset  += block_size;
        outputOffset += block_size;
      }
    }

    public void decryptCBC(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) {
      int block_size = GetBlockSize();
      byte[] tmpBlk = new byte[block_size];
      int nBlocks = inputLen / block_size;
      for(int bc = 0; bc < nBlocks; bc++) 
      {
        blockDecrypt(input, inputOffset, tmpBlk, 0);
        for(int i = 0; i < block_size; i++) 
        {
          tmpBlk[i] ^= _IV[i];
          _IV[i] = input[inputOffset + i];
          output[outputOffset + i] = tmpBlk[i];
        }
        inputOffset  += block_size;
        outputOffset += block_size;
      }
    }

    public void blockEncrypt(byte[] src, int inOffset, byte[] dst, int outOffset) {
      int[] Ker  = _Ke[0];

      int t0 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Ker[0];
      int t1 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Ker[1];
      int t2 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Ker[2];
      int t3 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Ker[3];

      int a0, a1, a2, a3;
      for (int r = 1; r < _rounds; r++) {
        Ker = _Ke[r];
        a0 = (T1[(t0 >> 24) & 0xFF] ^
              T2[(t1 >> 16) & 0xFF] ^
              T3[(t2 >>  8) & 0xFF] ^
              T4[ t3        & 0xFF]  ) ^ Ker[0];
        a1 = (T1[(t1 >> 24) & 0xFF] ^
              T2[(t2 >> 16) & 0xFF] ^
              T3[(t3 >>  8) & 0xFF] ^
              T4[ t0        & 0xFF]  ) ^ Ker[1];
        a2 = (T1[(t2 >> 24) & 0xFF] ^
              T2[(t3 >> 16) & 0xFF] ^
              T3[(t0 >>  8) & 0xFF] ^
              T4[ t1        & 0xFF]  ) ^ Ker[2];
        a3 = (T1[(t3 >> 24) & 0xFF] ^
              T2[(t0 >> 16) & 0xFF] ^
              T3[(t1 >>  8) & 0xFF] ^
              T4[ t2        & 0xFF]  ) ^ Ker[3];
        t0 = a0;
        t1 = a1;
        t2 = a2;
        t3 = a3;
      }

      Ker = _Ke[_rounds];
      int tt = Ker[0];
      dst[outOffset + 0] = (byte)(S[(t0 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset + 1] = (byte)(S[(t1 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset + 2] = (byte)(S[(t2 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset + 3] = (byte)(S[ t3        & 0xFF] ^  tt         );
      tt = Ker[1];
      dst[outOffset + 4] = (byte)(S[(t1 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset + 5] = (byte)(S[(t2 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset + 6] = (byte)(S[(t3 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset + 7] = (byte)(S[ t0     & 0xFF] ^  tt    );
      tt = Ker[2];
      dst[outOffset + 8] = (byte)(S[(t2 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset + 9] = (byte)(S[(t3 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset +10] = (byte)(S[(t0 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset +11] = (byte)(S[ t1     & 0xFF] ^  tt    );
      tt = Ker[3];
      dst[outOffset +12] = (byte)(S[(t3 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset +13] = (byte)(S[(t0 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset +14] = (byte)(S[(t1 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset +15] = (byte)(S[ t2     & 0xFF] ^  tt    );
    }

    public void blockDecrypt(byte[] src, int inOffset, byte[] dst, int outOffset) {
      int[] Kdr = _Kd[0];

      int t0 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Kdr[0];
      int t1 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Kdr[1];
      int t2 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Kdr[2];
      int t3 = ((src[inOffset++] & 0xFF) << 24 |
                (src[inOffset++] & 0xFF) << 16 |
                (src[inOffset++] & 0xFF) <<  8 |
                (src[inOffset++] & 0xFF)        ) ^ Kdr[3];

      int a0, a1, a2, a3;
      for (int r = 1; r < _rounds; r++) {
        Kdr = _Kd[r];
        a0 = (T5[(t0 >> 24) & 0xFF] ^
              T6[(t3 >> 16) & 0xFF] ^
              T7[(t2 >>  8) & 0xFF] ^
              T8[ t1        & 0xFF]  ) ^ Kdr[0];
        a1 = (T5[(t1 >> 24) & 0xFF] ^
              T6[(t0 >> 16) & 0xFF] ^
              T7[(t3 >>  8) & 0xFF] ^
              T8[ t2        & 0xFF]  ) ^ Kdr[1];
        a2 = (T5[(t2 >> 24) & 0xFF] ^
              T6[(t1 >> 16) & 0xFF] ^
              T7[(t0 >>  8) & 0xFF] ^
              T8[ t3        & 0xFF]  ) ^ Kdr[2];
        a3 = (T5[(t3 >> 24) & 0xFF] ^
              T6[(t2 >> 16) & 0xFF] ^
              T7[(t1 >>  8) & 0xFF] ^
              T8[ t0        & 0xFF]  ) ^ Kdr[3];
        t0 = a0;
        t1 = a1;
        t2 = a2;
        t3 = a3;
      }

      Kdr = _Kd[_rounds];
      int tt = Kdr[0];
      dst[outOffset + 0] = (byte)(Si[(t0 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset + 1] = (byte)(Si[(t3 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset + 2] = (byte)(Si[(t2 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset + 3] = (byte)(Si[ t1        & 0xFF] ^  tt       );
      tt = Kdr[1];
      dst[outOffset + 4] = (byte)(Si[(t1 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset + 5] = (byte)(Si[(t0 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset + 6] = (byte)(Si[(t3 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset + 7] = (byte)(Si[ t2        & 0xFF] ^  tt       );
      tt = Kdr[2];
      dst[outOffset + 8] = (byte)(Si[(t2 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset + 9] = (byte)(Si[(t1 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset +10] = (byte)(Si[(t0 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset +11] = (byte)(Si[ t3        & 0xFF] ^  tt        );
      tt = Kdr[3];
      dst[outOffset +12] = (byte)(Si[(t3 >> 24) & 0xFF] ^ (tt >> 24));
      dst[outOffset +13] = (byte)(Si[(t2 >> 16) & 0xFF] ^ (tt >> 16));
      dst[outOffset +14] = (byte)(Si[(t1 >>  8) & 0xFF] ^ (tt >>  8));
      dst[outOffset +15] = (byte)(Si[ t0        & 0xFF] ^  tt       );
    }

    /// <summary>
    /// constants
    /// </summary>
    private const int BLOCK_SIZE = 16; 
    private const int BC         = 4; 

    private static readonly int[] alog  = new int[256];
    private static readonly int[] log   = new int[256];

    private static readonly byte[] S    = new byte[256];
    private static readonly byte[] Si   = new byte[256];
    private static readonly int[]  T1   = new int[256];
    private static readonly int[]  T2   = new int[256];
    private static readonly int[]  T3   = new int[256];
    private static readonly int[]  T4   = new int[256];
    private static readonly int[]  T5   = new int[256];
    private static readonly int[]  T6   = new int[256];
    private static readonly int[]  T7   = new int[256];
    private static readonly int[]  T8   = new int[256];
    private static readonly int[]  U1   = new int[256];
    private static readonly int[]  U2   = new int[256];
    private static readonly int[]  U3   = new int[256];
    private static readonly int[]  U4   = new int[256];
    private static readonly byte[] rcon = new byte[30];

    private static readonly int[,,] shifts = new int[,,] {
    { {0, 0}, {1, 3}, {2, 2}, {3, 1} },
    { {0, 0}, {1, 5}, {2, 4}, {3, 3} },
    { {0, 0}, {1, 7}, {3, 5}, {4, 4} }};

    ///////////////////////////////////
    //class initialization
    ///////////////////////////////////
    static Rijndael() {
      int ROOT = 0x11B;
      int i, j = 0;

      alog[0] = 1;
      for (i = 1; i < 256; i++) {
        j = (alog[i-1] << 1) ^ alog[i-1];
        if ((j & 0x100) != 0) j ^= ROOT;
        alog[i] = j;
      }
      for (i = 1; i < 255; i++) log[alog[i]] = i;
      byte[,] A = new byte[,] {
        {1, 1, 1, 1, 1, 0, 0, 0},
        {0, 1, 1, 1, 1, 1, 0, 0},
        {0, 0, 1, 1, 1, 1, 1, 0},
        {0, 0, 0, 1, 1, 1, 1, 1},
        {1, 0, 0, 0, 1, 1, 1, 1},
        {1, 1, 0, 0, 0, 1, 1, 1},
        {1, 1, 1, 0, 0, 0, 1, 1},
        {1, 1, 1, 1, 0, 0, 0, 1}};
      byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1};

      int t;
      byte[,] box = new byte[256,8];
      box[1,7] = 1;
      for (i = 2; i < 256; i++) {
        j = alog[255 - log[i]];
        for (t = 0; t < 8; t++) {
          box[i,t] = (byte)((j >> (7 - t)) & 0x01);
        }
      }

      byte[,] cox = new byte[256,8];
      for (i = 0; i < 256; i++) {
        for (t = 0; t < 8; t++) {
          cox[i,t] = B[t];
          for (j = 0; j < 8; j++)
            cox[i,t] ^= (byte)(A[t,j] * box[i,j]);
        }
      }

      for (i = 0; i < 256; i++) {
        S[i] = (byte)(cox[i,0] << 7);
        for (t = 1; t < 8; t++)
          S[i] ^= (byte)(cox[i,t] << (7-t));
        Si[S[i] & 0xFF] = (byte) i;
      }
      byte[][] G = new byte[4][];
      G[0] = new byte[] {2, 1, 1, 3};
      G[1] = new byte[] {3, 2, 1, 1};
      G[2] = new byte[] {1, 3, 2, 1};
      G[3] = new byte[] {1, 1, 3, 2};

      byte[,] AA = new byte[4,8];
      for (i = 0; i < 4; i++) {
        for (j = 0; j < 4; j++) AA[i,j] = G[i][j];
        AA[i,i+4] = 1;
      }
      byte pivot, tmp;
      byte[][] iG = new byte[4][];
      for (i = 0; i < 4; i++)
        iG[i] = new byte[4];

      for (i = 0; i < 4; i++) {
        pivot = AA[i,i];
        if (pivot == 0) {
          t = i + 1;
          while ((AA[t,i] == 0) && (t < 4))
            t++;
          if (t != 4)  {
            for (j = 0; j < 8; j++) {
              tmp = AA[i,j];
              AA[i,j] = AA[t,j];
              AA[t,j] = (byte) tmp;
            }
            pivot = AA[i,i];
          }
        }
        for (j = 0; j < 8; j++)
          if (AA[i,j] != 0)
            AA[i,j] = (byte)
              alog[(255 + log[AA[i,j] & 0xFF] - log[pivot & 0xFF]) % 255];
        for (t = 0; t < 4; t++)
          if (i != t) {
            for (j = i+1; j < 8; j++)
              AA[t,j] ^= (byte)mul(AA[i,j], AA[t,i]);
            AA[t,i] = 0;
          }
      }

      for (i = 0; i < 4; i++)
        for (j = 0; j < 4; j++) iG[i][j] = AA[i,j + 4];

      int s;
      for (t = 0; t < 256; t++) {
        s = S[t];
        T1[t] = mul4(s, G[0]);
        T2[t] = mul4(s, G[1]);
        T3[t] = mul4(s, G[2]);
        T4[t] = mul4(s, G[3]);

        s = Si[t];
        T5[t] = mul4(s, iG[0]);
        T6[t] = mul4(s, iG[1]);
        T7[t] = mul4(s, iG[2]);
        T8[t] = mul4(s, iG[3]);

        U1[t] = mul4(t, iG[0]);
        U2[t] = mul4(t, iG[1]);
        U3[t] = mul4(t, iG[2]);
        U4[t] = mul4(t, iG[3]);
      }

      rcon[0] = 1;
      int r = 1;
      for (t = 1; t < 30; ) rcon[t++] = (byte)(r = mul(2, r));
    }

    private static int mul(int a, int b) {
      return (a != 0 && b != 0) ?
              alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] :
              0;
    }

    private static int mul4(int a, byte[] b) {
      if (a == 0) return 0;
      a = log[a & 0xFF];
      int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0;
      int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0;
      int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0;
      int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0;
      return a0 << 24 | a1 << 16 | a2 << 8 | a3;
    }
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.