DESCryptoServiceProvider.cs :  » Network-Clients » SharpPrivacyLibrary » SharpPrivacy » Cipher » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Network Clients » SharpPrivacyLibrary 
SharpPrivacyLibrary » SharpPrivacy » Cipher » DESCryptoServiceProvider.cs
//
// System.Security.Cryptography.DESCryptoServiceProvider
//
// Authors:
//  Sergey Chaban (serge@wildwestsoftware.com)
//  Sebastien Pouliot (spouliot@motus.com)
//
// Portions (C) 2002 Motus Technologies Inc. (http://www.motus.com)
//
// Modified by Daniel Fabian to fit SharpPrivacy's needs.
// This file is part of the SharpPrivacy source code contribution.
// Get get the original SymmetricAlgorithm class, please visit the
// mono project at http://www.go-mono.com.
//

using System;

namespace SharpPrivacy.Cipher{

  // References:
  // a.  FIPS PUB 46-3: Data Encryption Standard
  //  http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
  
  internal class DESTransform : SymmetricTransform {
  
    internal static readonly int KEY_BIT_SIZE = 64;
    internal static readonly int KEY_BYTE_SIZE = KEY_BIT_SIZE / 8;
    internal static readonly int BLOCK_BIT_SIZE = 64;
    internal static readonly int BLOCK_BYTE_SIZE = BLOCK_BIT_SIZE / 8;
  
    private byte [] keySchedule;
    private byte [] byteBuff;
    private uint [] dwordBuff;
  
    // S-boxes from FIPS 46-3, Appendix 1, page 17
    private static byte [] sBoxes = {
            /* S1 */
      14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
      0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
      4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
      15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13,
  
            /* S2 */
      15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
      3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
      0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
      13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9,
  
            /* S3 */
      10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
      13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
      13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
      1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
  
            /* S4 */
      7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
      13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
      10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
      3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14,
  
            /* S5 */
      2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
      14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
      4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
      11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3,
  
            /* S6 */
      12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
      10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
      9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
      4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
  
            /* S7 */
      4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
      13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
      1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
      6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12,
  
            /* S8 */
      13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
      1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
      7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
      2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11
    };
  
  
    // P table from page 15, also in Appendix 1, page 18
    private static byte [] pTab = {  
      16-1,  7-1, 20-1, 21-1,
      29-1, 12-1, 28-1, 17-1,
      1-1, 15-1, 23-1, 26-1,
      5-1, 18-1, 31-1, 10-1,
      2-1,  8-1, 24-1, 14-1,
      32-1, 27-1,  3-1,  9-1,
      19-1, 13-1, 30-1,  6-1,
      22-1, 11-1,  4-1, 25-1
    };
  
  
    // Permuted choice 1 table, PC-1, page 19
    // Translated to zero-based format.
    private static byte [] PC1 = {
      57-1, 49-1, 41-1, 33-1, 25-1, 17-1,  9-1,
      1-1, 58-1, 50-1, 42-1, 34-1, 26-1, 18-1,
      10-1,  2-1, 59-1, 51-1, 43-1, 35-1, 27-1,
      19-1, 11-1,  3-1, 60-1, 52-1, 44-1, 36-1,
  
      63-1, 55-1, 47-1, 39-1, 31-1, 23-1, 15-1,
      7-1, 62-1, 54-1, 46-1, 38-1, 30-1, 22-1,
      14-1,  6-1, 61-1, 53-1, 45-1, 37-1, 29-1,
      21-1, 13-1,  5-1, 28-1, 20-1, 12-1,  4-1
    };
  
  
    private static byte [] leftRot = {
      1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
    };
  
    private static byte [] leftRotTotal;
  
    // Permuted choice 2 table, PC-2, page 21
    // Translated to zero-based format.
    private static byte [] PC2 = {
      14-1, 17-1, 11-1, 24-1,  1-1,  5-1,
      3-1, 28-1, 15-1,  6-1, 21-1, 10-1,
      23-1, 19-1, 12-1,  4-1, 26-1,  8-1,
      16-1,  7-1, 27-1, 20-1, 13-1,  2-1,
      41-1, 52-1, 31-1, 37-1, 47-1, 55-1,
      30-1, 40-1, 51-1, 45-1, 33-1, 48-1,
      44-1, 49-1, 39-1, 56-1, 34-1, 53-1,
      46-1, 42-1, 50-1, 36-1, 29-1, 32-1
    };
  
  
    // Initial permutation IP, page 10.
    // Transposed to 0-based format.
    private static byte [] ipBits = {
      58-1, 50-1, 42-1, 34-1, 26-1, 18-1, 10-1,  2-1,
      60-1, 52-1, 44-1, 36-1, 28-1, 20-1, 12-1,  4-1,
      62-1, 54-1, 46-1, 38-1, 30-1, 22-1, 14-1,  6-1,
      64-1, 56-1, 48-1, 40-1, 32-1, 24-1, 16-1,  8-1,
      57-1, 49-1, 41-1, 33-1, 25-1, 17-1,  9-1,  1-1,
      59-1, 51-1, 43-1, 35-1, 27-1, 19-1, 11-1,  3-1,
      61-1, 53-1, 45-1, 37-1, 29-1, 21-1, 13-1,  5-1,
      63-1, 55-1, 47-1, 39-1, 31-1, 23-1, 15-1,  7-1
    };
  
  
    // Final permutation FP = IP^(-1), page 10.
    // Transposed to 0-based format.
    private static byte [] fpBits = {
      40-1,  8-1, 48-1, 16-1, 56-1, 24-1, 64-1, 32-1,
      39-1,  7-1, 47-1, 15-1, 55-1, 23-1, 63-1, 31-1,
      38-1,  6-1, 46-1, 14-1, 54-1, 22-1, 62-1, 30-1,
      37-1,  5-1, 45-1, 13-1, 53-1, 21-1, 61-1, 29-1,
      36-1,  4-1, 44-1, 12-1, 52-1, 20-1, 60-1, 28-1,
      35-1,  3-1, 43-1, 11-1, 51-1, 19-1, 59-1, 27-1,
      34-1,  2-1, 42-1, 10-1, 50-1, 18-1, 58-1, 26-1,
      33-1,  1-1, 41-1,  9-1, 49-1, 17-1, 57-1, 25-1
    };
  
    private static uint [] spBoxes;
    private static int [] ipTab;
    private static int [] fpTab;
  
    static DESTransform() {
      spBoxes = new uint [64 * 8];
  
      int [] pBox = new int [32];
  
      for (int p = 0; p < 32; p++) {
        for (int i = 0; i < 32; i++) {
          if (p == pTab [i]) {
            pBox [p] = i;
            break;
          }
        }
      }
  
      for (int s = 0; s < 8; s++) { // for each S-box
        int sOff = s << 6;
  
        for (int i = 0; i < 64; i++) { // inputs
          uint sp=0;
  
          int indx = (i & 0x20) | ((i & 1) << 4) | ((i >> 1) & 0xF);
  
          for (int j = 0; j < 4; j++) { // for each bit in the output
            if ((sBoxes [sOff + indx] & (8 >> j)) != 0) {
              sp |= (uint) (1 << (31 - pBox [(s << 2) + j]));
            }
          }
  
          spBoxes [sOff + i] = sp;
        }
      }
  
      leftRotTotal = new byte [leftRot.Length];
  
      for (int i = 0; i < leftRot.Length; i++) {
        int r = 0;
        for (int j = 0; j <= i; r += leftRot [j++]);
        leftRotTotal [i]  = (byte) r;
      }
  
      InitPermutationTable (ipBits, out ipTab);
      InitPermutationTable (fpBits, out fpTab);
    } // class constructor
  
    // Default constructor.
    internal DESTransform(SymmetricAlgorithm symmAlgo, bool encryption, byte[] key, byte[] iv) : base (symmAlgo, encryption, iv) {
      keySchedule = new byte [KEY_BYTE_SIZE * 16];
      byteBuff = new byte [BLOCK_BYTE_SIZE];
      dwordBuff = new uint [BLOCK_BYTE_SIZE / 4];
      SetKey (key);
    }
  
    private static void InitPermutationTable (byte [] pBits, out int [] permTab) {
      permTab = new int [8*2 * 8*2 * (64/32)];
  
      for (int i = 0; i < 16; i++) {
        for (int j = 0; j < 16; j++) {
          int offs = (i << 5) + (j << 1);
          for (int n = 0; n < 64; n++) {
            int bitNum = (int) pBits [n];
            if ((bitNum >> 2 == i) &&
              0 != (j & (8 >> (bitNum & 3)))) {
              permTab [offs + (n >> (3+2))] |= (int) ((0x80808080 & (0xFF << (n & (3 << 3)))) >> (n & 7));
            }
          }
        }
      }
    }
  
    private uint CipherFunct(uint r, int n) {
      uint res = 0;
      byte [] subkey = keySchedule;
      int i = n << 3;
  
      uint rt = (r >> 1) | (r << 31); // ROR32(r)
      res |= spBoxes [0*64 + (((rt >> 26) ^ subkey [i++]) & 0x3F)];
      res |= spBoxes [1*64 + (((rt >> 22) ^ subkey [i++]) & 0x3F)];
      res |= spBoxes [2*64 + (((rt >> 18) ^ subkey [i++]) & 0x3F)];
      res |= spBoxes [3*64 + (((rt >> 14) ^ subkey [i++]) & 0x3F)];
      res |= spBoxes [4*64 + (((rt >> 10) ^ subkey [i++]) & 0x3F)];
      res |= spBoxes [5*64 + (((rt >>  6) ^ subkey [i++]) & 0x3F)];
      res |= spBoxes [6*64 + (((rt >>  2) ^ subkey [i++]) & 0x3F)];
      rt = (r << 1) | (r >> 31); // ROL32(r)
      res |= spBoxes [7*64 + ((rt ^ subkey [i]) & 0x3F)];
  
      return res;
    }
  
  
    private static void Permutation(byte [] input, byte [] _output, int [] permTab, bool preSwap) {
      if (preSwap)
        BSwap(input);
  
      byte [] output = _output;
  
      int offs1 = (((int)(input [0]) >> 4)) << 1;
      int offs2 = (1 << 5) + ((((int)input [0]) & 0xF) << 1);
  
      int d1 = permTab [offs1++] | permTab [offs2++];
      int d2 = permTab [offs1]   | permTab [offs2];
  
  
      int max = BLOCK_BYTE_SIZE << 1;
      for (int i = 2, indx = 1; i < max; i += 2, indx++) {
        int ii = (int) input [indx];
        offs1 = (i << 5) + ((ii >> 4) << 1);
        offs2 = ((i + 1) << 5) + ((ii & 0xF) << 1);
  
        d1 |= permTab [offs1++] | permTab [offs2++];
        d2 |= permTab [offs1]   | permTab [offs2];
      }
  
      if (preSwap) {
        output [0] = (byte) (d1);
        output [1] = (byte) (d1 >> 8);
        output [2] = (byte) (d1 >> 16);
        output [3] = (byte) (d1 >> 24);
        output [4] = (byte) (d2);
        output [5] = (byte) (d2 >> 8);
        output [6] = (byte) (d2 >> 16);
        output [7] = (byte) (d2 >> 24);
      } else {
        output [0] = (byte) (d1 >> 24);
        output [1] = (byte) (d1 >> 16);
        output [2] = (byte) (d1 >> 8);
        output [3] = (byte) (d1);
        output [4] = (byte) (d2 >> 24);
        output [5] = (byte) (d2 >> 16);
        output [6] = (byte) (d2 >> 8);
        output [7] = (byte) (d2);
      }
    }
  
    private static void BSwap(byte [] byteBuff) {
      byte t;
  
      t = byteBuff [0];
      byteBuff [0] = byteBuff [3];
      byteBuff [3] = t;
  
      t = byteBuff [1];
      byteBuff [1] = byteBuff [2];
      byteBuff [2] = t;
  
      t = byteBuff [4];
      byteBuff [4] = byteBuff [7];
      byteBuff [7] = t;
  
      t = byteBuff [5];
      byteBuff [5] = byteBuff [6];
      byteBuff [6] = t;
    }
  
    internal void SetKey(byte[] key) {
      // NOTE: see Fig. 3, Key schedule calculation, at page 20.
      Array.Clear (keySchedule, 0, keySchedule.Length);
  
      int keyBitSize = PC1.Length;
  
      byte[] keyPC1 = new byte [keyBitSize]; // PC1-permuted key
      byte[] keyRot = new byte [keyBitSize]; // PC1 & rotated
  
      int indx = 0;
  
      foreach (byte bitPos in PC1) {
        keyPC1 [indx++] = (byte)((key [(int)bitPos >> 3] >> (7 ^ (bitPos & 7))) & 1);
      }
  
      int j;
      for (int i = 0; i < KEY_BYTE_SIZE*2; i++) {
        int b = keyBitSize >> 1;
  
        for (j = 0; j < b; j++) {
          int s = j + (int) leftRotTotal [i];
          keyRot [j] = keyPC1 [s < b ? s : s - b];
        }
  
        for (j = b; j < keyBitSize; j++) {
          int s = j + (int) leftRotTotal [i];
          keyRot[j] = keyPC1[s < keyBitSize ? s : s - b];
        }
  
        int keyOffs = i * KEY_BYTE_SIZE;
  
        j = 0;
        foreach (byte bitPos in PC2) {
          if (keyRot[(int)bitPos] != 0) {
            keySchedule[keyOffs + (j/6)] |= (byte)(0x80 >> ((j % 6) + 2));
          }
          j++;
        }
      }
    }
  
    // public helper for TripleDES
    public void ProcessBlock(byte[] input, byte[] output) {
      ECB(input, output);
    }
  
    protected override void ECB(byte[] input, byte[] output) {
      byte [] byteBuff = this.byteBuff;
      uint [] dwordBuff = this.dwordBuff;
  
      Permutation(input, byteBuff, ipTab, false);
      Buffer.BlockCopy(byteBuff, 0, dwordBuff, 0, BLOCK_BYTE_SIZE);
  
      if (encrypt) {
        uint d0 = dwordBuff[0];
        uint d1 = dwordBuff[1];
  
        // 16 rounds
        d0 ^= CipherFunct(d1,  0);
        d1 ^= CipherFunct(d0,  1);
        d0 ^= CipherFunct(d1,  2);
        d1 ^= CipherFunct(d0,  3);
        d0 ^= CipherFunct(d1,  4);
        d1 ^= CipherFunct(d0,  5);
        d0 ^= CipherFunct(d1,  6);
        d1 ^= CipherFunct(d0,  7);
        d0 ^= CipherFunct(d1,  8);
        d1 ^= CipherFunct(d0,  9);
        d0 ^= CipherFunct(d1, 10);
        d1 ^= CipherFunct(d0, 11);
        d0 ^= CipherFunct(d1, 12);
        d1 ^= CipherFunct(d0, 13);
        d0 ^= CipherFunct(d1, 14);
        d1 ^= CipherFunct(d0, 15);
  
        dwordBuff [0] = d1;
        dwordBuff [1] = d0;
      } else {
        uint d1 = dwordBuff[0];
        uint d0 = dwordBuff[1];
  
        // 16 rounds in reverse order
        d1 ^= CipherFunct(d0, 15);
        d0 ^= CipherFunct(d1, 14);
        d1 ^= CipherFunct(d0, 13);
        d0 ^= CipherFunct(d1, 12);
        d1 ^= CipherFunct(d0, 11);
        d0 ^= CipherFunct(d1, 10);
        d1 ^= CipherFunct(d0,  9);
        d0 ^= CipherFunct(d1,  8);
        d1 ^= CipherFunct(d0,  7);
        d0 ^= CipherFunct(d1,  6);
        d1 ^= CipherFunct(d0,  5);
        d0 ^= CipherFunct(d1,  4);
        d1 ^= CipherFunct(d0,  3);
        d0 ^= CipherFunct(d1,  2);
        d1 ^= CipherFunct(d0,  1);
        d0 ^= CipherFunct(d1,  0);
  
        dwordBuff [0] = d0;
        dwordBuff [1] = d1;
      }
  
      Buffer.BlockCopy(dwordBuff, 0, byteBuff, 0, BLOCK_BYTE_SIZE);
      Permutation(byteBuff, output, fpTab, true);
    }
  } 
  
  public sealed class DESCryptoServiceProvider : DES {
  
    public DESCryptoServiceProvider() : base() {}
  
    public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV) {
      Key = rgbKey;
      IV = rgbIV;
      return new DESTransform(this, false, rgbKey, rgbIV);
    }
  
    public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV) {
      Key = rgbKey;
      IV = rgbIV;
      return new DESTransform(this, true, rgbKey, rgbIV);
    }
  
    public override void GenerateIV() {
      IVValue = KeyBuilder.IV(BlockSizeValue >> 3);
    }
  
    public override void GenerateKey () {
      KeyValue = KeyBuilder.Key(KeySizeValue >> 3);
      while (IsWeakKey(KeyValue) || IsSemiWeakKey(KeyValue))
        KeyValue = KeyBuilder.Key(KeySizeValue >> 3);
    }
  
  } // DESCryptoServiceProvider

} // System.Security.Cryptography
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.