PrimalityTests.cs :  » Network-Clients » SharpPrivacyLibrary » SharpPrivacy » Cipher » Math » Prime » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Network Clients » SharpPrivacyLibrary 
SharpPrivacyLibrary » SharpPrivacy » Cipher » Math » Prime » PrimalityTests.cs
//
// Mono.Math.Prime.PrimalityTests.cs - Test for primality
//
// Authors:
//  Ben Maurer
//
// Copyright (c) 2003 Ben Maurer. All rights reserved
//
// Modified by Daniel Fabian to fit SharpPrivacy's needs.
// This file is part of the SharpPrivacy source code contribution.
// Get get the original BigInteger class, please visit the
// mono project at http://www.go-mono.com.

using System;
using SharpPrivacy.Cipher;

namespace SharpPrivacy.Cipher.Math.Prime{

  [CLSCompliant(false)]
  public delegate bool PrimalityTest (BigInteger bi, ConfidenceFactor confidence);

  [CLSCompliant(false)]
  public sealed class PrimalityTests {

    #region SPP Test
    
    private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence) {
      int bc = bi.bitCount();

      int Rounds;

      // Data from HAC, 4.49
      if      (bc <= 100 ) Rounds = 27;
      else if (bc <= 150 ) Rounds = 18;
      else if (bc <= 200 ) Rounds = 15;
      else if (bc <= 250 ) Rounds = 12;
      else if (bc <= 300 ) Rounds =  9;
      else if (bc <= 350 ) Rounds =  8;
      else if (bc <= 400 ) Rounds =  7;
      else if (bc <= 500 ) Rounds =  6;
      else if (bc <= 600 ) Rounds =  5;
      else if (bc <= 800 ) Rounds =  4;
      else if (bc <= 1250) Rounds =  3;
      else         Rounds =  2;

      switch (confidence) {
        case ConfidenceFactor.ExtraLow:
          Rounds >>= 2;
          return Rounds != 0 ? Rounds : 1;
        case ConfidenceFactor.Low:
          Rounds >>= 1;
          return Rounds != 0 ? Rounds : 1;
        case ConfidenceFactor.Medium:
          return Rounds;
        case ConfidenceFactor.High:
          return Rounds <<= 1;
        case ConfidenceFactor.ExtraHigh:
          return Rounds <<= 2;
        case ConfidenceFactor.Provable:
          throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable");
        default:
          throw new ArgumentOutOfRangeException ("confidence");
      }
    }

    /// <summary>
    ///     Probabilistic prime test based on Rabin-Miller's test
    /// </summary>
    /// <param name="bi" type="BigInteger.BigInteger">
    ///     <para>
    ///         The number to test.
    ///     </para>
    /// </param>
    /// <param name="confidence" type="int">
    ///     <para>
    ///  The number of chosen bases. The test has at least a
    ///  1/4^confidence chance of falsely returning True.
    ///     </para>
    /// </param>
    /// <returns>
    ///  <para>
    ///    True if "this" is a strong pseudoprime to randomly chosen bases.
    ///  </para>
    ///  <para>
    ///    False if "this" is definitely NOT prime.
    ///  </para>
    /// </returns>
    public static bool RabinMillerTest (BigInteger bi, ConfidenceFactor confidence) {
      int Rounds = GetSPPRounds (bi, confidence);

      // calculate values of s and t
      BigInteger p_sub1 = bi - 1;
      int s = p_sub1.LowestSetBit ();

      BigInteger t = p_sub1 >> s;

      int bits = bi.bitCount ();
      BigInteger a = null;
      System.Security.Cryptography.RandomNumberGenerator rng = System.Security.Cryptography.RandomNumberGenerator.Create ();
      BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);

      for (int round = 0; round < Rounds; round++) {
        while (true) {               // generate a < n
          a = BigInteger.genRandom (bits, rng);

          // make sure "a" is not 0
          if (a > 1 && a < bi)
            break;
        }

        if (a.gcd (bi) != 1) return false;

        BigInteger b = mr.Pow (a, t);

        if (b == 1) continue;              // a^t mod p = 1

        bool result = false;
        for (int j = 0; j < s; j++) {

          if (b == p_sub1) {         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
            result = true;
            break;
          }

          b = (b * b) % bi;
        }

        if (result == false)
          return false;
      }
      return true;
    }

    public static bool SmallPrimeSppTest (BigInteger bi, ConfidenceFactor confidence) {
      int Rounds = GetSPPRounds (bi, confidence);

      // calculate values of s and t
      BigInteger p_sub1 = bi - 1;
      int s = p_sub1.LowestSetBit ();

      BigInteger t = p_sub1 >> s;


      BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);

      for (int round = 0; round < Rounds; round++) {

        BigInteger b = mr.Pow (BigInteger.smallPrimes [round], t);

        if (b == 1) continue;              // a^t mod p = 1

        bool result = false;
        for (int j = 0; j < s; j++) {

          if (b == p_sub1) {         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
            result = true;
            break;
          }

          b = (b * b) % bi;
        }

        if (result == false)
          return false;
      }
      return true;

    }

    #endregion


    // TODO: Implement the Lucus test
    // TODO: Implement other new primality tests
    // TODO: Implement primality proving
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.