SRP6Client.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Agreement » Srp » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Agreement » Srp » SRP6Client.cs
using System;

using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;

namespace Org.BouncyCastle.Crypto.Agreement.Srp{
  /**
   * Implements the client side SRP-6a protocol. Note that this class is stateful, and therefore NOT threadsafe.
   * This implementation of SRP is based on the optimized message sequence put forth by Thomas Wu in the paper
   * "SRP-6: Improvements and Refinements to the Secure Remote Password Protocol, 2002"
   */
  public class Srp6Client
  {
      protected BigInteger N;
      protected BigInteger g;

      protected BigInteger privA;
      protected BigInteger pubA;

      protected BigInteger B;

      protected BigInteger x;
      protected BigInteger u;
      protected BigInteger S;

      protected IDigest digest;
      protected SecureRandom random;

      public Srp6Client()
      {
      }

      /**
       * Initialises the client to begin new authentication attempt
       * @param N The safe prime associated with the client's verifier
       * @param g The group parameter associated with the client's verifier
       * @param digest The digest algorithm associated with the client's verifier
       * @param random For key generation
       */
      public virtual void Init(BigInteger N, BigInteger g, IDigest digest, SecureRandom random)
      {
          this.N = N;
          this.g = g;
          this.digest = digest;
          this.random = random;
      }

      /**
       * Generates client's credentials given the client's salt, identity and password
       * @param salt The salt used in the client's verifier.
       * @param identity The user's identity (eg. username)
       * @param password The user's password
       * @return Client's public value to send to server
       */
      public virtual BigInteger GenerateClientCredentials(byte[] salt, byte[] identity, byte[] password)
      {
          this.x = Srp6Utilities.CalculateX(digest, N, salt, identity, password);
          this.privA = SelectPrivateValue();
          this.pubA = g.ModPow(privA, N);

          return pubA;
      }

      /**
       * Generates client's verification message given the server's credentials
       * @param serverB The server's credentials
       * @return Client's verification message for the server
       * @throws CryptoException If server's credentials are invalid
       */
      public virtual BigInteger CalculateSecret(BigInteger serverB)
      {
          this.B = Srp6Utilities.ValidatePublicValue(N, serverB);
          this.u = Srp6Utilities.CalculateU(digest, N, pubA, B);
          this.S = CalculateS();

          return S;
      }

      protected virtual BigInteger SelectPrivateValue()
      {
        return Srp6Utilities.GeneratePrivateValue(digest, N, g, random);      
      }

      private BigInteger CalculateS()
      {
          BigInteger k = Srp6Utilities.CalculateK(digest, N, g);
          BigInteger exp = u.Multiply(x).Add(privA);
          BigInteger tmp = g.ModPow(x, N).Multiply(k).Mod(N);
          return B.Subtract(tmp).Mod(N).ModPow(exp, N);
      }
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.