using System;
using Org.BouncyCastle.Crypto.Parameters;
namespace Org.BouncyCastle.Crypto.Engines{
/**
* Camellia - based on RFC 3713, smaller implementation, about half the size of CamelliaEngine.
*/
public class CamelliaLightEngine
: IBlockCipher
{
private const int BLOCK_SIZE = 16;
// private const int MASK8 = 0xff;
private bool initialised;
private bool _keyis128;
private uint[] subkey = new uint[24 * 4];
private uint[] kw = new uint[4 * 2]; // for whitening
private uint[] ke = new uint[6 * 2]; // for FL and FL^(-1)
private uint[] state = new uint[4]; // for encryption and decryption
private static readonly uint[] SIGMA = {
0xa09e667f, 0x3bcc908b,
0xb67ae858, 0x4caa73b2,
0xc6ef372f, 0xe94f82be,
0x54ff53a5, 0xf1d36f1c,
0x10e527fa, 0xde682d1d,
0xb05688c2, 0xb3e6c1fd
};
/*
*
* S-box data
*
*/
private static readonly byte[] SBOX1 = {
(byte)112, (byte)130, (byte)44, (byte)236,
(byte)179, (byte)39, (byte)192, (byte)229,
(byte)228, (byte)133, (byte)87, (byte)53,
(byte)234, (byte)12, (byte)174, (byte)65,
(byte)35, (byte)239, (byte)107, (byte)147,
(byte)69, (byte)25, (byte)165, (byte)33,
(byte)237, (byte)14, (byte)79, (byte)78,
(byte)29, (byte)101, (byte)146, (byte)189,
(byte)134, (byte)184, (byte)175, (byte)143,
(byte)124, (byte)235, (byte)31, (byte)206,
(byte)62, (byte)48, (byte)220, (byte)95,
(byte)94, (byte)197, (byte)11, (byte)26,
(byte)166, (byte)225, (byte)57, (byte)202,
(byte)213, (byte)71, (byte)93, (byte)61,
(byte)217, (byte)1, (byte)90, (byte)214,
(byte)81, (byte)86, (byte)108, (byte)77,
(byte)139, (byte)13, (byte)154, (byte)102,
(byte)251, (byte)204, (byte)176, (byte)45,
(byte)116, (byte)18, (byte)43, (byte)32,
(byte)240, (byte)177, (byte)132, (byte)153,
(byte)223, (byte)76, (byte)203, (byte)194,
(byte)52, (byte)126, (byte)118, (byte)5,
(byte)109, (byte)183, (byte)169, (byte)49,
(byte)209, (byte)23, (byte)4, (byte)215,
(byte)20, (byte)88, (byte)58, (byte)97,
(byte)222, (byte)27, (byte)17, (byte)28,
(byte)50, (byte)15, (byte)156, (byte)22,
(byte)83, (byte)24, (byte)242, (byte)34,
(byte)254, (byte)68, (byte)207, (byte)178,
(byte)195, (byte)181, (byte)122, (byte)145,
(byte)36, (byte)8, (byte)232, (byte)168,
(byte)96, (byte)252, (byte)105, (byte)80,
(byte)170, (byte)208, (byte)160, (byte)125,
(byte)161, (byte)137, (byte)98, (byte)151,
(byte)84, (byte)91, (byte)30, (byte)149,
(byte)224, (byte)255, (byte)100, (byte)210,
(byte)16, (byte)196, (byte)0, (byte)72,
(byte)163, (byte)247, (byte)117, (byte)219,
(byte)138, (byte)3, (byte)230, (byte)218,
(byte)9, (byte)63, (byte)221, (byte)148,
(byte)135, (byte)92, (byte)131, (byte)2,
(byte)205, (byte)74, (byte)144, (byte)51,
(byte)115, (byte)103, (byte)246, (byte)243,
(byte)157, (byte)127, (byte)191, (byte)226,
(byte)82, (byte)155, (byte)216, (byte)38,
(byte)200, (byte)55, (byte)198, (byte)59,
(byte)129, (byte)150, (byte)111, (byte)75,
(byte)19, (byte)190, (byte)99, (byte)46,
(byte)233, (byte)121, (byte)167, (byte)140,
(byte)159, (byte)110, (byte)188, (byte)142,
(byte)41, (byte)245, (byte)249, (byte)182,
(byte)47, (byte)253, (byte)180, (byte)89,
(byte)120, (byte)152, (byte)6, (byte)106,
(byte)231, (byte)70, (byte)113, (byte)186,
(byte)212, (byte)37, (byte)171, (byte)66,
(byte)136, (byte)162, (byte)141, (byte)250,
(byte)114, (byte)7, (byte)185, (byte)85,
(byte)248, (byte)238, (byte)172, (byte)10,
(byte)54, (byte)73, (byte)42, (byte)104,
(byte)60, (byte)56, (byte)241, (byte)164,
(byte)64, (byte)40, (byte)211, (byte)123,
(byte)187, (byte)201, (byte)67, (byte)193,
(byte)21, (byte)227, (byte)173, (byte)244,
(byte)119, (byte)199, (byte)128, (byte)158
};
private static uint rightRotate(uint x, int s)
{
return ((x >> s) + (x << (32 - s)));
}
private static uint leftRotate(uint x, int s)
{
return (x << s) + (x >> (32 - s));
}
private static void roldq(int rot, uint[] ki, int ioff, uint[] ko, int ooff)
{
ko[0 + ooff] = (ki[0 + ioff] << rot) | (ki[1 + ioff] >> (32 - rot));
ko[1 + ooff] = (ki[1 + ioff] << rot) | (ki[2 + ioff] >> (32 - rot));
ko[2 + ooff] = (ki[2 + ioff] << rot) | (ki[3 + ioff] >> (32 - rot));
ko[3 + ooff] = (ki[3 + ioff] << rot) | (ki[0 + ioff] >> (32 - rot));
ki[0 + ioff] = ko[0 + ooff];
ki[1 + ioff] = ko[1 + ooff];
ki[2 + ioff] = ko[2 + ooff];
ki[3 + ioff] = ko[3 + ooff];
}
private static void decroldq(int rot, uint[] ki, int ioff, uint[] ko, int ooff)
{
ko[2 + ooff] = (ki[0 + ioff] << rot) | (ki[1 + ioff] >> (32 - rot));
ko[3 + ooff] = (ki[1 + ioff] << rot) | (ki[2 + ioff] >> (32 - rot));
ko[0 + ooff] = (ki[2 + ioff] << rot) | (ki[3 + ioff] >> (32 - rot));
ko[1 + ooff] = (ki[3 + ioff] << rot) | (ki[0 + ioff] >> (32 - rot));
ki[0 + ioff] = ko[2 + ooff];
ki[1 + ioff] = ko[3 + ooff];
ki[2 + ioff] = ko[0 + ooff];
ki[3 + ioff] = ko[1 + ooff];
}
private static void roldqo32(int rot, uint[] ki, int ioff, uint[] ko, int ooff)
{
ko[0 + ooff] = (ki[1 + ioff] << (rot - 32)) | (ki[2 + ioff] >> (64 - rot));
ko[1 + ooff] = (ki[2 + ioff] << (rot - 32)) | (ki[3 + ioff] >> (64 - rot));
ko[2 + ooff] = (ki[3 + ioff] << (rot - 32)) | (ki[0 + ioff] >> (64 - rot));
ko[3 + ooff] = (ki[0 + ioff] << (rot - 32)) | (ki[1 + ioff] >> (64 - rot));
ki[0 + ioff] = ko[0 + ooff];
ki[1 + ioff] = ko[1 + ooff];
ki[2 + ioff] = ko[2 + ooff];
ki[3 + ioff] = ko[3 + ooff];
}
private static void decroldqo32(int rot, uint[] ki, int ioff, uint[] ko, int ooff)
{
ko[2 + ooff] = (ki[1 + ioff] << (rot - 32)) | (ki[2 + ioff] >> (64 - rot));
ko[3 + ooff] = (ki[2 + ioff] << (rot - 32)) | (ki[3 + ioff] >> (64 - rot));
ko[0 + ooff] = (ki[3 + ioff] << (rot - 32)) | (ki[0 + ioff] >> (64 - rot));
ko[1 + ooff] = (ki[0 + ioff] << (rot - 32)) | (ki[1 + ioff] >> (64 - rot));
ki[0 + ioff] = ko[2 + ooff];
ki[1 + ioff] = ko[3 + ooff];
ki[2 + ioff] = ko[0 + ooff];
ki[3 + ioff] = ko[1 + ooff];
}
private static uint bytes2uint(byte[] src, int offset)
{
uint word = 0;
for (int i = 0; i < 4; i++)
{
word = (word << 8) + (uint)src[i + offset];
}
return word;
}
private static void uint2bytes(uint word, byte[] dst, int offset)
{
for (int i = 0; i < 4; i++)
{
dst[(3 - i) + offset] = (byte)word;
word >>= 8;
}
}
private byte lRot8(byte v, int rot)
{
return (byte)(((uint)v << rot) | ((uint)v >> (8 - rot)));
}
private uint sbox2(int x)
{
return (uint)lRot8(SBOX1[x], 1);
}
private uint sbox3(int x)
{
return (uint)lRot8(SBOX1[x], 7);
}
private uint sbox4(int x)
{
return (uint)SBOX1[lRot8((byte)x, 1)];
}
private void camelliaF2(uint[] s, uint[] skey, int keyoff)
{
uint t1, t2, u, v;
t1 = s[0] ^ skey[0 + keyoff];
u = sbox4((byte)t1);
u |= (sbox3((byte)(t1 >> 8)) << 8);
u |= (sbox2((byte)(t1 >> 16)) << 16);
u |= ((uint)(SBOX1[(byte)(t1 >> 24)]) << 24);
t2 = s[1] ^ skey[1 + keyoff];
v = (uint)SBOX1[(byte)t2];
v |= (sbox4((byte)(t2 >> 8)) << 8);
v |= (sbox3((byte)(t2 >> 16)) << 16);
v |= (sbox2((byte)(t2 >> 24)) << 24);
v = leftRotate(v, 8);
u ^= v;
v = leftRotate(v, 8) ^ u;
u = rightRotate(u, 8) ^ v;
s[2] ^= leftRotate(v, 16) ^ u;
s[3] ^= leftRotate(u, 8);
t1 = s[2] ^ skey[2 + keyoff];
u = sbox4((byte)t1);
u |= sbox3((byte)(t1 >> 8)) << 8;
u |= sbox2((byte)(t1 >> 16)) << 16;
u |= ((uint)SBOX1[(byte)(t1 >> 24)]) << 24;
t2 = s[3] ^ skey[3 + keyoff];
v = (uint)SBOX1[(byte)t2];
v |= sbox4((byte)(t2 >> 8)) << 8;
v |= sbox3((byte)(t2 >> 16)) << 16;
v |= sbox2((byte)(t2 >> 24)) << 24;
v = leftRotate(v, 8);
u ^= v;
v = leftRotate(v, 8) ^ u;
u = rightRotate(u, 8) ^ v;
s[0] ^= leftRotate(v, 16) ^ u;
s[1] ^= leftRotate(u, 8);
}
private void camelliaFLs(uint[] s, uint[] fkey, int keyoff)
{
s[1] ^= leftRotate(s[0] & fkey[0 + keyoff], 1);
s[0] ^= fkey[1 + keyoff] | s[1];
s[2] ^= fkey[3 + keyoff] | s[3];
s[3] ^= leftRotate(fkey[2 + keyoff] & s[2], 1);
}
private void setKey(bool forEncryption, byte[] key)
{
uint[] k = new uint[8];
uint[] ka = new uint[4];
uint[] kb = new uint[4];
uint[] t = new uint[4];
switch (key.Length)
{
case 16:
_keyis128 = true;
k[0] = bytes2uint(key, 0);
k[1] = bytes2uint(key, 4);
k[2] = bytes2uint(key, 8);
k[3] = bytes2uint(key, 12);
k[4] = k[5] = k[6] = k[7] = 0;
break;
case 24:
k[0] = bytes2uint(key, 0);
k[1] = bytes2uint(key, 4);
k[2] = bytes2uint(key, 8);
k[3] = bytes2uint(key, 12);
k[4] = bytes2uint(key, 16);
k[5] = bytes2uint(key, 20);
k[6] = ~k[4];
k[7] = ~k[5];
_keyis128 = false;
break;
case 32:
k[0] = bytes2uint(key, 0);
k[1] = bytes2uint(key, 4);
k[2] = bytes2uint(key, 8);
k[3] = bytes2uint(key, 12);
k[4] = bytes2uint(key, 16);
k[5] = bytes2uint(key, 20);
k[6] = bytes2uint(key, 24);
k[7] = bytes2uint(key, 28);
_keyis128 = false;
break;
default:
throw new ArgumentException("key sizes are only 16/24/32 bytes.");
}
for (int i = 0; i < 4; i++)
{
ka[i] = k[i] ^ k[i + 4];
}
/* compute KA */
camelliaF2(ka, SIGMA, 0);
for (int i = 0; i < 4; i++)
{
ka[i] ^= k[i];
}
camelliaF2(ka, SIGMA, 4);
if (_keyis128)
{
if (forEncryption)
{
/* KL dependant keys */
kw[0] = k[0];
kw[1] = k[1];
kw[2] = k[2];
kw[3] = k[3];
roldq(15, k, 0, subkey, 4);
roldq(30, k, 0, subkey, 12);
roldq(15, k, 0, t, 0);
subkey[18] = t[2];
subkey[19] = t[3];
roldq(17, k, 0, ke, 4);
roldq(17, k, 0, subkey, 24);
roldq(17, k, 0, subkey, 32);
/* KA dependant keys */
subkey[0] = ka[0];
subkey[1] = ka[1];
subkey[2] = ka[2];
subkey[3] = ka[3];
roldq(15, ka, 0, subkey, 8);
roldq(15, ka, 0, ke, 0);
roldq(15, ka, 0, t, 0);
subkey[16] = t[0];
subkey[17] = t[1];
roldq(15, ka, 0, subkey, 20);
roldqo32(34, ka, 0, subkey, 28);
roldq(17, ka, 0, kw, 4);
}
else
{ // decryption
/* KL dependant keys */
kw[4] = k[0];
kw[5] = k[1];
kw[6] = k[2];
kw[7] = k[3];
decroldq(15, k, 0, subkey, 28);
decroldq(30, k, 0, subkey, 20);
decroldq(15, k, 0, t, 0);
subkey[16] = t[0];
subkey[17] = t[1];
decroldq(17, k, 0, ke, 0);
decroldq(17, k, 0, subkey, 8);
decroldq(17, k, 0, subkey, 0);
/* KA dependant keys */
subkey[34] = ka[0];
subkey[35] = ka[1];
subkey[32] = ka[2];
subkey[33] = ka[3];
decroldq(15, ka, 0, subkey, 24);
decroldq(15, ka, 0, ke, 4);
decroldq(15, ka, 0, t, 0);
subkey[18] = t[2];
subkey[19] = t[3];
decroldq(15, ka, 0, subkey, 12);
decroldqo32(34, ka, 0, subkey, 4);
roldq(17, ka, 0, kw, 0);
}
}
else
{ // 192bit or 256bit
/* compute KB */
for (int i = 0; i < 4; i++)
{
kb[i] = ka[i] ^ k[i + 4];
}
camelliaF2(kb, SIGMA, 8);
if (forEncryption)
{
/* KL dependant keys */
kw[0] = k[0];
kw[1] = k[1];
kw[2] = k[2];
kw[3] = k[3];
roldqo32(45, k, 0, subkey, 16);
roldq(15, k, 0, ke, 4);
roldq(17, k, 0, subkey, 32);
roldqo32(34, k, 0, subkey, 44);
/* KR dependant keys */
roldq(15, k, 4, subkey, 4);
roldq(15, k, 4, ke, 0);
roldq(30, k, 4, subkey, 24);
roldqo32(34, k, 4, subkey, 36);
/* KA dependant keys */
roldq(15, ka, 0, subkey, 8);
roldq(30, ka, 0, subkey, 20);
/* 32bit rotation */
ke[8] = ka[1];
ke[9] = ka[2];
ke[10] = ka[3];
ke[11] = ka[0];
roldqo32(49, ka, 0, subkey, 40);
/* KB dependant keys */
subkey[0] = kb[0];
subkey[1] = kb[1];
subkey[2] = kb[2];
subkey[3] = kb[3];
roldq(30, kb, 0, subkey, 12);
roldq(30, kb, 0, subkey, 28);
roldqo32(51, kb, 0, kw, 4);
}
else
{ // decryption
/* KL dependant keys */
kw[4] = k[0];
kw[5] = k[1];
kw[6] = k[2];
kw[7] = k[3];
decroldqo32(45, k, 0, subkey, 28);
decroldq(15, k, 0, ke, 4);
decroldq(17, k, 0, subkey, 12);
decroldqo32(34, k, 0, subkey, 0);
/* KR dependant keys */
decroldq(15, k, 4, subkey, 40);
decroldq(15, k, 4, ke, 8);
decroldq(30, k, 4, subkey, 20);
decroldqo32(34, k, 4, subkey, 8);
/* KA dependant keys */
decroldq(15, ka, 0, subkey, 36);
decroldq(30, ka, 0, subkey, 24);
/* 32bit rotation */
ke[2] = ka[1];
ke[3] = ka[2];
ke[0] = ka[3];
ke[1] = ka[0];
decroldqo32(49, ka, 0, subkey, 4);
/* KB dependant keys */
subkey[46] = kb[0];
subkey[47] = kb[1];
subkey[44] = kb[2];
subkey[45] = kb[3];
decroldq(30, kb, 0, subkey, 32);
decroldq(30, kb, 0, subkey, 16);
roldqo32(51, kb, 0, kw, 0);
}
}
}
private int processBlock128(byte[] input, int inOff, byte[] output, int outOff)
{
for (int i = 0; i < 4; i++)
{
state[i] = bytes2uint(input, inOff + (i * 4));
state[i] ^= kw[i];
}
camelliaF2(state, subkey, 0);
camelliaF2(state, subkey, 4);
camelliaF2(state, subkey, 8);
camelliaFLs(state, ke, 0);
camelliaF2(state, subkey, 12);
camelliaF2(state, subkey, 16);
camelliaF2(state, subkey, 20);
camelliaFLs(state, ke, 4);
camelliaF2(state, subkey, 24);
camelliaF2(state, subkey, 28);
camelliaF2(state, subkey, 32);
state[2] ^= kw[4];
state[3] ^= kw[5];
state[0] ^= kw[6];
state[1] ^= kw[7];
uint2bytes(state[2], output, outOff);
uint2bytes(state[3], output, outOff + 4);
uint2bytes(state[0], output, outOff + 8);
uint2bytes(state[1], output, outOff + 12);
return BLOCK_SIZE;
}
private int processBlock192or256(byte[] input, int inOff, byte[] output, int outOff)
{
for (int i = 0; i < 4; i++)
{
state[i] = bytes2uint(input, inOff + (i * 4));
state[i] ^= kw[i];
}
camelliaF2(state, subkey, 0);
camelliaF2(state, subkey, 4);
camelliaF2(state, subkey, 8);
camelliaFLs(state, ke, 0);
camelliaF2(state, subkey, 12);
camelliaF2(state, subkey, 16);
camelliaF2(state, subkey, 20);
camelliaFLs(state, ke, 4);
camelliaF2(state, subkey, 24);
camelliaF2(state, subkey, 28);
camelliaF2(state, subkey, 32);
camelliaFLs(state, ke, 8);
camelliaF2(state, subkey, 36);
camelliaF2(state, subkey, 40);
camelliaF2(state, subkey, 44);
state[2] ^= kw[4];
state[3] ^= kw[5];
state[0] ^= kw[6];
state[1] ^= kw[7];
uint2bytes(state[2], output, outOff);
uint2bytes(state[3], output, outOff + 4);
uint2bytes(state[0], output, outOff + 8);
uint2bytes(state[1], output, outOff + 12);
return BLOCK_SIZE;
}
public CamelliaLightEngine()
{
initialised = false;
}
public string AlgorithmName
{
get { return "Camellia"; }
}
public bool IsPartialBlockOkay
{
get { return false; }
}
public int GetBlockSize()
{
return BLOCK_SIZE;
}
public void Init(
bool forEncryption,
ICipherParameters parameters)
{
if (!(parameters is KeyParameter))
throw new ArgumentException("only simple KeyParameter expected.");
setKey(forEncryption, ((KeyParameter)parameters).GetKey());
initialised = true;
}
public int ProcessBlock(
byte[] input,
int inOff,
byte[] output,
int outOff)
{
if (!initialised)
throw new InvalidOperationException("Camellia engine not initialised");
if ((inOff + BLOCK_SIZE) > input.Length)
throw new DataLengthException("input buffer too short");
if ((outOff + BLOCK_SIZE) > output.Length)
throw new DataLengthException("output buffer too short");
if (_keyis128)
{
return processBlock128(input, inOff, output, outOff);
}
else
{
return processBlock192or256(input, inOff, output, outOff);
}
}
public void Reset()
{
}
}
}
|