Cast6Engine.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Engines » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Engines » Cast6Engine.cs
using System;

using Org.BouncyCastle.Crypto.Utilities;

namespace Org.BouncyCastle.Crypto.Engines{
    /**
     * A class that provides CAST6 key encryption operations,
     * such as encoding data and generating keys.
     *
     * All the algorithms herein are from the Internet RFC
     *
     * RFC2612 - CAST6 (128bit block, 128-256bit key)
     *
     * and implement a simplified cryptography interface.
     */
    public sealed class Cast6Engine
    : Cast5Engine
    {
        //====================================
        // Useful constants
        //====================================
        private const int ROUNDS = 12;
        private const int BLOCK_SIZE = 16;  // bytes = 128 bits

    /*
        * Put the round and mask keys into an array.
        * Kr0[i] => _Kr[i*4 + 0]
        */
        private int []_Kr = new int[ROUNDS*4]; // the rotating round key(s)
        private uint []_Km = new uint[ROUNDS*4]; // the masking round key(s)

    /*
        * Key setup
        */
        private int []_Tr = new int[24 * 8];
        private uint []_Tm = new uint[24 * 8];
        private uint[] _workingKey = new uint[8];

    public Cast6Engine()
        {
        }

    public override string AlgorithmName
        {
            get { return "CAST6"; }
        }

    public override void Reset()
        {
        }

    public override int GetBlockSize()
        {
            return BLOCK_SIZE;
        }

    //==================================
        // Private Implementation
        //==================================
        /*
        * Creates the subkeys using the same nomenclature
        * as described in RFC2612.
        *
        * See section 2.4
        */
        internal override void SetKey(
      byte[] key)
        {
            uint Cm = 0x5a827999;
            uint Mm = 0x6ed9eba1;
            int Cr = 19;
            int Mr = 17;
            /*
            * Determine the key size here, if required
            *
            * if keysize < 256 bytes, pad with 0
            *
            * Typical key sizes => 128, 160, 192, 224, 256
            */
            for (int i=0; i< 24; i++)
            {
                for (int j=0; j< 8; j++)
                {
                    _Tm[i*8 + j] = Cm;
                    Cm += Mm; //mod 2^32;
                    _Tr[i*8 + j] = Cr;
                    Cr = (Cr + Mr) & 0x1f;            // mod 32
                }
            }

      byte[] tmpKey = new byte[64];
      key.CopyTo(tmpKey, 0);

      // now create ABCDEFGH
            for (int i = 0; i < 8; i++)
            {
                _workingKey[i] = Pack.BE_To_UInt32(tmpKey, i*4);
            }

      // Generate the key schedule
            for (int i = 0; i < 12; i++)
            {
                // KAPPA <- W2i(KAPPA)
                int i2 = i*2 *8;
                _workingKey[6] ^= F1(_workingKey[7], _Tm[i2], _Tr[i2]);
                _workingKey[5] ^= F2(_workingKey[6], _Tm[i2+1], _Tr[i2+1]);
                _workingKey[4] ^= F3(_workingKey[5], _Tm[i2+2], _Tr[i2+2]);
                _workingKey[3] ^= F1(_workingKey[4], _Tm[i2+3], _Tr[i2+3]);
                _workingKey[2] ^= F2(_workingKey[3], _Tm[i2+4], _Tr[i2+4]);
                _workingKey[1] ^= F3(_workingKey[2], _Tm[i2+5], _Tr[i2+5]);
                _workingKey[0] ^= F1(_workingKey[1], _Tm[i2+6], _Tr[i2+6]);
                _workingKey[7] ^= F2(_workingKey[0], _Tm[i2+7], _Tr[i2+7]);
                // KAPPA <- W2i+1(KAPPA)
                i2 = (i*2 + 1)*8;
                _workingKey[6] ^= F1(_workingKey[7], _Tm[i2], _Tr[i2]);
                _workingKey[5] ^= F2(_workingKey[6], _Tm[i2+1], _Tr[i2+1]);
                _workingKey[4] ^= F3(_workingKey[5], _Tm[i2+2], _Tr[i2+2]);
                _workingKey[3] ^= F1(_workingKey[4], _Tm[i2+3], _Tr[i2+3]);
                _workingKey[2] ^= F2(_workingKey[3], _Tm[i2+4], _Tr[i2+4]);
                _workingKey[1] ^= F3(_workingKey[2], _Tm[i2+5], _Tr[i2+5]);
                _workingKey[0] ^= F1(_workingKey[1], _Tm[i2+6], _Tr[i2+6]);
                _workingKey[7] ^= F2(_workingKey[0], _Tm[i2+7], _Tr[i2+7]);
                // Kr_(i) <- KAPPA
                _Kr[i*4] = (int)(_workingKey[0] & 0x1f);
                _Kr[i*4 + 1] = (int)(_workingKey[2] & 0x1f);
                _Kr[i*4 + 2] = (int)(_workingKey[4] & 0x1f);
                _Kr[i*4 + 3] = (int)(_workingKey[6] & 0x1f);
                // Km_(i) <- KAPPA
                _Km[i*4] = _workingKey[7];
                _Km[i*4 + 1] = _workingKey[5];
                _Km[i*4 + 2] = _workingKey[3];
                _Km[i*4 + 3] = _workingKey[1];
            }
        }

    /**
        * Encrypt the given input starting at the given offset and place
        * the result in the provided buffer starting at the given offset.
        *
        * @param src        The plaintext buffer
        * @param srcIndex    An offset into src
        * @param dst        The ciphertext buffer
        * @param dstIndex    An offset into dst
        */
        internal override int EncryptBlock(
            byte[]  src,
            int    srcIndex,
            byte[]  dst,
            int    dstIndex)
        {
            // process the input block
            // batch the units up into 4x32 bit chunks and go for it
            uint A = Pack.BE_To_UInt32(src, srcIndex);
            uint B = Pack.BE_To_UInt32(src, srcIndex + 4);
            uint C = Pack.BE_To_UInt32(src, srcIndex + 8);
            uint D = Pack.BE_To_UInt32(src, srcIndex + 12);
            uint[] result = new uint[4];
            CAST_Encipher(A, B, C, D, result);
            // now stuff them into the destination block
            Pack.UInt32_To_BE(result[0], dst, dstIndex);
            Pack.UInt32_To_BE(result[1], dst, dstIndex + 4);
            Pack.UInt32_To_BE(result[2], dst, dstIndex + 8);
            Pack.UInt32_To_BE(result[3], dst, dstIndex + 12);
            return BLOCK_SIZE;
        }

    /**
        * Decrypt the given input starting at the given offset and place
        * the result in the provided buffer starting at the given offset.
        *
        * @param src        The plaintext buffer
        * @param srcIndex    An offset into src
        * @param dst        The ciphertext buffer
        * @param dstIndex    An offset into dst
        */
        internal override int DecryptBlock(
            byte[]  src,
            int    srcIndex,
            byte[]  dst,
            int    dstIndex)
        {
            // process the input block
            // batch the units up into 4x32 bit chunks and go for it
            uint A = Pack.BE_To_UInt32(src, srcIndex);
            uint B = Pack.BE_To_UInt32(src, srcIndex + 4);
            uint C = Pack.BE_To_UInt32(src, srcIndex + 8);
            uint D = Pack.BE_To_UInt32(src, srcIndex + 12);
            uint[] result = new uint[4];
            CAST_Decipher(A, B, C, D, result);
            // now stuff them into the destination block
            Pack.UInt32_To_BE(result[0], dst, dstIndex);
            Pack.UInt32_To_BE(result[1], dst, dstIndex + 4);
            Pack.UInt32_To_BE(result[2], dst, dstIndex + 8);
            Pack.UInt32_To_BE(result[3], dst, dstIndex + 12);
            return BLOCK_SIZE;
        }

    /**
        * Does the 12 quad rounds rounds to encrypt the block.
        *
        * @param A    the 00-31  bits of the plaintext block
        * @param B    the 32-63  bits of the plaintext block
        * @param C    the 64-95  bits of the plaintext block
        * @param D    the 96-127 bits of the plaintext block
        * @param result the resulting ciphertext
        */
        private void CAST_Encipher(
      uint  A,
      uint  B,
      uint  C,
      uint  D,
      uint[]  result)
        {
            for (int i = 0; i < 6; i++)
            {
                int x = i*4;
                // BETA <- Qi(BETA)
                C ^= F1(D, _Km[x], _Kr[x]);
                B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
                A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
                D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
            }
            for (int i = 6; i < 12; i++)
            {
                int x = i*4;
                // BETA <- QBARi(BETA)
                D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
                A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
                B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
                C ^= F1(D, _Km[x], _Kr[x]);
            }
            result[0] = A;
            result[1] = B;
            result[2] = C;
            result[3] = D;
        }

    /**
        * Does the 12 quad rounds rounds to decrypt the block.
        *
        * @param A    the 00-31  bits of the ciphertext block
        * @param B    the 32-63  bits of the ciphertext block
        * @param C    the 64-95  bits of the ciphertext block
        * @param D    the 96-127 bits of the ciphertext block
        * @param result the resulting plaintext
        */
        private void CAST_Decipher(
      uint  A,
      uint  B,
      uint  C,
      uint  D,
      uint[]  result)
        {
            for (int i = 0; i < 6; i++)
            {
                int x = (11-i)*4;
                // BETA <- Qi(BETA)
                C ^= F1(D, _Km[x], _Kr[x]);
                B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
                A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
                D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
            }
            for (int i=6; i<12; i++)
            {
                int x = (11-i)*4;
                // BETA <- QBARi(BETA)
                D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
                A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
                B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
                C ^= F1(D, _Km[x], _Kr[x]);
            }
            result[0] = A;
            result[1] = B;
            result[2] = C;
            result[3] = D;
        }
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.