using System;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Utilities;
namespace Org.BouncyCastle.Crypto.Engines{
/**
* HC-128 is a software-efficient stream cipher created by Hongjun Wu. It
* generates keystream from a 128-bit secret key and a 128-bit initialization
* vector.
* <p>
* http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
* </p><p>
* It is a third phase candidate in the eStream contest, and is patent-free.
* No attacks are known as of today (April 2007). See
*
* http://www.ecrypt.eu.org/stream/hcp3.html
* </p>
*/
public class HC128Engine
: IStreamCipher
{
private uint[] p = new uint[512];
private uint[] q = new uint[512];
private uint cnt = 0;
private static uint F1(uint x)
{
return RotateRight(x, 7) ^ RotateRight(x, 18) ^ (x >> 3);
}
private static uint F2(uint x)
{
return RotateRight(x, 17) ^ RotateRight(x, 19) ^ (x >> 10);
}
private uint G1(uint x, uint y, uint z)
{
return (RotateRight(x, 10) ^ RotateRight(z, 23)) + RotateRight(y, 8);
}
private uint G2(uint x, uint y, uint z)
{
return (RotateLeft(x, 10) ^ RotateLeft(z, 23)) + RotateLeft(y, 8);
}
private static uint RotateLeft(uint x, int bits)
{
return (x << bits) | (x >> -bits);
}
private static uint RotateRight(uint x, int bits)
{
return (x >> bits) | (x << -bits);
}
private uint H1(uint x)
{
return q[x & 0xFF] + q[((x >> 16) & 0xFF) + 256];
}
private uint H2(uint x)
{
return p[x & 0xFF] + p[((x >> 16) & 0xFF) + 256];
}
private static uint Mod1024(uint x)
{
return x & 0x3FF;
}
private static uint Mod512(uint x)
{
return x & 0x1FF;
}
private static uint Dim(uint x, uint y)
{
return Mod512(x - y);
}
private uint Step()
{
uint j = Mod512(cnt);
uint ret;
if (cnt < 512)
{
p[j] += G1(p[Dim(j, 3)], p[Dim(j, 10)], p[Dim(j, 511)]);
ret = H1(p[Dim(j, 12)]) ^ p[j];
}
else
{
q[j] += G2(q[Dim(j, 3)], q[Dim(j, 10)], q[Dim(j, 511)]);
ret = H2(q[Dim(j, 12)]) ^ q[j];
}
cnt = Mod1024(cnt + 1);
return ret;
}
private byte[] key, iv;
private bool initialised;
private void Init()
{
if (key.Length != 16)
throw new ArgumentException("The key must be 128 bits long");
cnt = 0;
uint[] w = new uint[1280];
for (int i = 0; i < 16; i++)
{
w[i >> 2] |= ((uint)key[i] << (8 * (i & 0x3)));
}
Array.Copy(w, 0, w, 4, 4);
for (int i = 0; i < iv.Length && i < 16; i++)
{
w[(i >> 2) + 8] |= ((uint)iv[i] << (8 * (i & 0x3)));
}
Array.Copy(w, 8, w, 12, 4);
for (uint i = 16; i < 1280; i++)
{
w[i] = F2(w[i - 2]) + w[i - 7] + F1(w[i - 15]) + w[i - 16] + i;
}
Array.Copy(w, 256, p, 0, 512);
Array.Copy(w, 768, q, 0, 512);
for (int i = 0; i < 512; i++)
{
p[i] = Step();
}
for (int i = 0; i < 512; i++)
{
q[i] = Step();
}
cnt = 0;
}
public string AlgorithmName
{
get { return "HC-128"; }
}
/**
* Initialise a HC-128 cipher.
*
* @param forEncryption whether or not we are for encryption. Irrelevant, as
* encryption and decryption are the same.
* @param params the parameters required to set up the cipher.
* @throws ArgumentException if the params argument is
* inappropriate (ie. the key is not 128 bit long).
*/
public void Init(
bool forEncryption,
ICipherParameters parameters)
{
ICipherParameters keyParam = parameters;
if (parameters is ParametersWithIV)
{
iv = ((ParametersWithIV)parameters).GetIV();
keyParam = ((ParametersWithIV)parameters).Parameters;
}
else
{
iv = new byte[0];
}
if (keyParam is KeyParameter)
{
key = ((KeyParameter)keyParam).GetKey();
Init();
}
else
{
throw new ArgumentException(
"Invalid parameter passed to HC128 init - " + parameters.GetType().Name,
"parameters");
}
initialised = true;
}
private byte[] buf = new byte[4];
private int idx = 0;
private byte GetByte()
{
if (idx == 0)
{
Pack.UInt32_To_LE(Step(), buf);
}
byte ret = buf[idx];
idx = idx + 1 & 0x3;
return ret;
}
public void ProcessBytes(
byte[] input,
int inOff,
int len,
byte[] output,
int outOff)
{
if (!initialised)
throw new InvalidOperationException(AlgorithmName + " not initialised");
if ((inOff + len) > input.Length)
throw new DataLengthException("input buffer too short");
if ((outOff + len) > output.Length)
throw new DataLengthException("output buffer too short");
for (int i = 0; i < len; i++)
{
output[outOff + i] = (byte)(input[inOff + i] ^ GetByte());
}
}
public void Reset()
{
idx = 0;
Init();
}
public byte ReturnByte(byte input)
{
return (byte)(input ^ GetByte());
}
}
}
|