RC2Engine.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Engines » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Engines » RC2Engine.cs
using System;

using Org.BouncyCastle.Crypto.Parameters;

namespace Org.BouncyCastle.Crypto.Engines{
    /**
    * an implementation of RC2 as described in RFC 2268
    *      "A Description of the RC2(r) Encryption Algorithm" R. Rivest.
    */
    public class RC2Engine
    : IBlockCipher
    {
        //
        // the values we use for key expansion (based on the digits of PI)
        //
        private static readonly byte[] piTable =
        {
            (byte)0xd9, (byte)0x78, (byte)0xf9, (byte)0xc4, (byte)0x19, (byte)0xdd, (byte)0xb5, (byte)0xed,
            (byte)0x28, (byte)0xe9, (byte)0xfd, (byte)0x79, (byte)0x4a, (byte)0xa0, (byte)0xd8, (byte)0x9d,
            (byte)0xc6, (byte)0x7e, (byte)0x37, (byte)0x83, (byte)0x2b, (byte)0x76, (byte)0x53, (byte)0x8e,
            (byte)0x62, (byte)0x4c, (byte)0x64, (byte)0x88, (byte)0x44, (byte)0x8b, (byte)0xfb, (byte)0xa2,
            (byte)0x17, (byte)0x9a, (byte)0x59, (byte)0xf5, (byte)0x87, (byte)0xb3, (byte)0x4f, (byte)0x13,
            (byte)0x61, (byte)0x45, (byte)0x6d, (byte)0x8d, (byte)0x9, (byte)0x81, (byte)0x7d, (byte)0x32,
            (byte)0xbd, (byte)0x8f, (byte)0x40, (byte)0xeb, (byte)0x86, (byte)0xb7, (byte)0x7b, (byte)0xb,
            (byte)0xf0, (byte)0x95, (byte)0x21, (byte)0x22, (byte)0x5c, (byte)0x6b, (byte)0x4e, (byte)0x82,
            (byte)0x54, (byte)0xd6, (byte)0x65, (byte)0x93, (byte)0xce, (byte)0x60, (byte)0xb2, (byte)0x1c,
            (byte)0x73, (byte)0x56, (byte)0xc0, (byte)0x14, (byte)0xa7, (byte)0x8c, (byte)0xf1, (byte)0xdc,
            (byte)0x12, (byte)0x75, (byte)0xca, (byte)0x1f, (byte)0x3b, (byte)0xbe, (byte)0xe4, (byte)0xd1,
            (byte)0x42, (byte)0x3d, (byte)0xd4, (byte)0x30, (byte)0xa3, (byte)0x3c, (byte)0xb6, (byte)0x26,
            (byte)0x6f, (byte)0xbf, (byte)0xe, (byte)0xda, (byte)0x46, (byte)0x69, (byte)0x7, (byte)0x57,
            (byte)0x27, (byte)0xf2, (byte)0x1d, (byte)0x9b, (byte)0xbc, (byte)0x94, (byte)0x43, (byte)0x3,
            (byte)0xf8, (byte)0x11, (byte)0xc7, (byte)0xf6, (byte)0x90, (byte)0xef, (byte)0x3e, (byte)0xe7,
            (byte)0x6, (byte)0xc3, (byte)0xd5, (byte)0x2f, (byte)0xc8, (byte)0x66, (byte)0x1e, (byte)0xd7,
            (byte)0x8, (byte)0xe8, (byte)0xea, (byte)0xde, (byte)0x80, (byte)0x52, (byte)0xee, (byte)0xf7,
            (byte)0x84, (byte)0xaa, (byte)0x72, (byte)0xac, (byte)0x35, (byte)0x4d, (byte)0x6a, (byte)0x2a,
            (byte)0x96, (byte)0x1a, (byte)0xd2, (byte)0x71, (byte)0x5a, (byte)0x15, (byte)0x49, (byte)0x74,
            (byte)0x4b, (byte)0x9f, (byte)0xd0, (byte)0x5e, (byte)0x4, (byte)0x18, (byte)0xa4, (byte)0xec,
            (byte)0xc2, (byte)0xe0, (byte)0x41, (byte)0x6e, (byte)0xf, (byte)0x51, (byte)0xcb, (byte)0xcc,
            (byte)0x24, (byte)0x91, (byte)0xaf, (byte)0x50, (byte)0xa1, (byte)0xf4, (byte)0x70, (byte)0x39,
            (byte)0x99, (byte)0x7c, (byte)0x3a, (byte)0x85, (byte)0x23, (byte)0xb8, (byte)0xb4, (byte)0x7a,
            (byte)0xfc, (byte)0x2, (byte)0x36, (byte)0x5b, (byte)0x25, (byte)0x55, (byte)0x97, (byte)0x31,
            (byte)0x2d, (byte)0x5d, (byte)0xfa, (byte)0x98, (byte)0xe3, (byte)0x8a, (byte)0x92, (byte)0xae,
            (byte)0x5, (byte)0xdf, (byte)0x29, (byte)0x10, (byte)0x67, (byte)0x6c, (byte)0xba, (byte)0xc9,
            (byte)0xd3, (byte)0x0, (byte)0xe6, (byte)0xcf, (byte)0xe1, (byte)0x9e, (byte)0xa8, (byte)0x2c,
            (byte)0x63, (byte)0x16, (byte)0x1, (byte)0x3f, (byte)0x58, (byte)0xe2, (byte)0x89, (byte)0xa9,
            (byte)0xd, (byte)0x38, (byte)0x34, (byte)0x1b, (byte)0xab, (byte)0x33, (byte)0xff, (byte)0xb0,
            (byte)0xbb, (byte)0x48, (byte)0xc, (byte)0x5f, (byte)0xb9, (byte)0xb1, (byte)0xcd, (byte)0x2e,
            (byte)0xc5, (byte)0xf3, (byte)0xdb, (byte)0x47, (byte)0xe5, (byte)0xa5, (byte)0x9c, (byte)0x77,
            (byte)0xa, (byte)0xa6, (byte)0x20, (byte)0x68, (byte)0xfe, (byte)0x7f, (byte)0xc1, (byte)0xad
        };

        private const int BLOCK_SIZE = 8;

        private int[]   workingKey;
        private bool encrypting;

        private int[] GenerateWorkingKey(
            byte[]      key,
            int         bits)
        {
            int     x;
            int[]   xKey = new int[128];

            for (int i = 0; i != key.Length; i++)
            {
                xKey[i] = key[i] & 0xff;
            }

            // Phase 1: Expand input key to 128 bytes
            int len = key.Length;

            if (len < 128)
            {
                int     index = 0;

                x = xKey[len - 1];

                do
                {
                    x = piTable[(x + xKey[index++]) & 255] & 0xff;
                    xKey[len++] = x;
                }
                while (len < 128);
            }

            // Phase 2 - reduce effective key size to "bits"
            len = (bits + 7) >> 3;
            x = piTable[xKey[128 - len] & (255 >> (7 & -bits))] & 0xff;
            xKey[128 - len] = x;

            for (int i = 128 - len - 1; i >= 0; i--)
            {
                    x = piTable[x ^ xKey[i + len]] & 0xff;
                    xKey[i] = x;
            }

            // Phase 3 - copy to newKey in little-endian order
            int[] newKey = new int[64];

            for (int i = 0; i != newKey.Length; i++)
            {
                newKey[i] = (xKey[2 * i] + (xKey[2 * i + 1] << 8));
            }

            return newKey;
        }

        /**
        * initialise a RC2 cipher.
        *
        * @param forEncryption whether or not we are for encryption.
        * @param parameters the parameters required to set up the cipher.
        * @exception ArgumentException if the parameters argument is
        * inappropriate.
        */
        public void Init(
            bool        forEncryption,
            ICipherParameters  parameters)
        {
            this.encrypting = forEncryption;

      if (parameters is RC2Parameters)
            {
                RC2Parameters param = (RC2Parameters) parameters;

        workingKey = GenerateWorkingKey(param.GetKey(), param.EffectiveKeyBits);
            }
            else if (parameters is KeyParameter)
            {
        KeyParameter param = (KeyParameter) parameters;
        byte[] key = param.GetKey();

        workingKey = GenerateWorkingKey(key, key.Length * 8);
            }
            else
            {
                throw new ArgumentException("invalid parameter passed to RC2 init - " + parameters.GetType().Name);
            }
        }

    public void Reset()
        {
        }

    public string AlgorithmName
        {
            get { return "RC2"; }
        }

    public bool IsPartialBlockOkay
    {
      get { return false; }
    }

    public int GetBlockSize()
        {
            return BLOCK_SIZE;
        }

        public  int ProcessBlock(
            byte[]  input,
            int    inOff,
            byte[]  output,
            int    outOff)
        {
            if (workingKey == null)
                throw new InvalidOperationException("RC2 engine not initialised");
            if ((inOff + BLOCK_SIZE) > input.Length)
                throw new DataLengthException("input buffer too short");
            if ((outOff + BLOCK_SIZE) > output.Length)
                throw new DataLengthException("output buffer too short");

      if (encrypting)
            {
                EncryptBlock(input, inOff, output, outOff);
            }
            else
            {
                DecryptBlock(input, inOff, output, outOff);
            }

            return BLOCK_SIZE;
        }

        /**
        * return the result rotating the 16 bit number in x left by y
        */
        private int RotateWordLeft(
            int x,
            int y)
        {
            x &= 0xffff;
            return (x << y) | (x >> (16 - y));
        }

        private void EncryptBlock(
            byte[]  input,
            int     inOff,
            byte[]  outBytes,
            int     outOff)
        {
            int x76, x54, x32, x10;

            x76 = ((input[inOff + 7] & 0xff) << 8) + (input[inOff + 6] & 0xff);
            x54 = ((input[inOff + 5] & 0xff) << 8) + (input[inOff + 4] & 0xff);
            x32 = ((input[inOff + 3] & 0xff) << 8) + (input[inOff + 2] & 0xff);
            x10 = ((input[inOff + 1] & 0xff) << 8) + (input[inOff + 0] & 0xff);

            for (int i = 0; i <= 16; i += 4)
            {
                    x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
                    x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
                    x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
                    x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
            }

            x10 += workingKey[x76 & 63];
            x32 += workingKey[x10 & 63];
            x54 += workingKey[x32 & 63];
            x76 += workingKey[x54 & 63];

            for (int i = 20; i <= 40; i += 4)
            {
                    x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
                    x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
                    x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
                    x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
            }

            x10 += workingKey[x76 & 63];
            x32 += workingKey[x10 & 63];
            x54 += workingKey[x32 & 63];
            x76 += workingKey[x54 & 63];

            for (int i = 44; i < 64; i += 4)
            {
                    x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
                    x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
                    x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
                    x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
            }

            outBytes[outOff + 0] = (byte)x10;
            outBytes[outOff + 1] = (byte)(x10 >> 8);
            outBytes[outOff + 2] = (byte)x32;
            outBytes[outOff + 3] = (byte)(x32 >> 8);
            outBytes[outOff + 4] = (byte)x54;
            outBytes[outOff + 5] = (byte)(x54 >> 8);
            outBytes[outOff + 6] = (byte)x76;
            outBytes[outOff + 7] = (byte)(x76 >> 8);
        }

        private void DecryptBlock(
            byte[]  input,
            int     inOff,
            byte[]  outBytes,
            int     outOff)
        {
            int x76, x54, x32, x10;

            x76 = ((input[inOff + 7] & 0xff) << 8) + (input[inOff + 6] & 0xff);
            x54 = ((input[inOff + 5] & 0xff) << 8) + (input[inOff + 4] & 0xff);
            x32 = ((input[inOff + 3] & 0xff) << 8) + (input[inOff + 2] & 0xff);
            x10 = ((input[inOff + 1] & 0xff) << 8) + (input[inOff + 0] & 0xff);

            for (int i = 60; i >= 44; i -= 4)
            {
                x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
                x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
                x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
                x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
            }

            x76 -= workingKey[x54 & 63];
            x54 -= workingKey[x32 & 63];
            x32 -= workingKey[x10 & 63];
            x10 -= workingKey[x76 & 63];

            for (int i = 40; i >= 20; i -= 4)
            {
                x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
                x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
                x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
                x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
            }

            x76 -= workingKey[x54 & 63];
            x54 -= workingKey[x32 & 63];
            x32 -= workingKey[x10 & 63];
            x10 -= workingKey[x76 & 63];

            for (int i = 16; i >= 0; i -= 4)
            {
                x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
                x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
                x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
                x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
            }

            outBytes[outOff + 0] = (byte)x10;
            outBytes[outOff + 1] = (byte)(x10 >> 8);
            outBytes[outOff + 2] = (byte)x32;
            outBytes[outOff + 3] = (byte)(x32 >> 8);
            outBytes[outOff + 4] = (byte)x54;
            outBytes[outOff + 5] = (byte)(x54 >> 8);
            outBytes[outOff + 6] = (byte)x76;
            outBytes[outOff + 7] = (byte)(x76 >> 8);
        }
    }

}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.