RC532Engine.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Engines » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Engines » RC532Engine.cs
using System;

using Org.BouncyCastle.Crypto.Parameters;

namespace Org.BouncyCastle.Crypto.Engines{
    /**
    * The specification for RC5 came from the <code>RC5 Encryption Algorithm</code>
    * publication in RSA CryptoBytes, Spring of 1995.
    * <em>http://www.rsasecurity.com/rsalabs/cryptobytes</em>.
    * <p>
    * This implementation has a word size of 32 bits.</p>
    */
    public class RC532Engine
    : IBlockCipher
    {
        /*
        * the number of rounds to perform
        */
        private int _noRounds;

        /*
        * the expanded key array of size 2*(rounds + 1)
        */
        private int [] _S;

        /*
        * our "magic constants" for 32 32
        *
        * Pw = Odd((e-2) * 2^wordsize)
        * Qw = Odd((o-2) * 2^wordsize)
        *
        * where e is the base of natural logarithms (2.718281828...)
        * and o is the golden ratio (1.61803398...)
        */
        private static readonly int P32 = unchecked((int) 0xb7e15163);
        private static readonly int Q32 = unchecked((int) 0x9e3779b9);

        private bool forEncryption;

        /**
        * Create an instance of the RC5 encryption algorithm
        * and set some defaults
        */
        public RC532Engine()
        {
            _noRounds     = 12;         // the default
//            _S            = null;
        }

        public string AlgorithmName
        {
            get { return "RC5-32"; }
        }

    public bool IsPartialBlockOkay
    {
      get { return false; }
    }

    public int GetBlockSize()
        {
            return 2 * 4;
        }

    /**
        * initialise a RC5-32 cipher.
        *
        * @param forEncryption whether or not we are for encryption.
        * @param parameters the parameters required to set up the cipher.
        * @exception ArgumentException if the parameters argument is
        * inappropriate.
        */
        public void Init(
            bool        forEncryption,
            ICipherParameters  parameters)
        {
            if (typeof(RC5Parameters).IsInstanceOfType(parameters))
            {
                RC5Parameters p = (RC5Parameters)parameters;

                _noRounds = p.Rounds;

                SetKey(p.GetKey());
            }
            else if (typeof(KeyParameter).IsInstanceOfType(parameters))
            {
                KeyParameter p = (KeyParameter)parameters;

                SetKey(p.GetKey());
            }
            else
            {
                throw new ArgumentException("invalid parameter passed to RC532 init - " + parameters.GetType().ToString());
            }

            this.forEncryption = forEncryption;
        }

        public int ProcessBlock(
            byte[]  input,
            int    inOff,
            byte[]  output,
            int    outOff)
        {
            return (forEncryption)
        ?  EncryptBlock(input, inOff, output, outOff)
        :  DecryptBlock(input, inOff, output, outOff);
        }

    public void Reset()
        {
        }

        /**
        * Re-key the cipher.
        *
        * @param  key  the key to be used
        */
        private void SetKey(
            byte[] key)
        {
            //
            // KEY EXPANSION:
            //
            // There are 3 phases to the key expansion.
            //
            // Phase 1:
            //   Copy the secret key K[0...b-1] into an array L[0..c-1] of
            //   c = ceil(b/u), where u = 32/8 in little-endian order.
            //   In other words, we fill up L using u consecutive key bytes
            //   of K. Any unfilled byte positions in L are zeroed. In the
            //   case that b = c = 0, set c = 1 and L[0] = 0.
            //
            int[]   L = new int[(key.Length + (4 - 1)) / 4];

            for (int i = 0; i != key.Length; i++)
            {
                L[i / 4] += (key[i] & 0xff) << (8 * (i % 4));
            }

            //
            // Phase 2:
            //   Initialize S to a particular fixed pseudo-random bit pattern
            //   using an arithmetic progression modulo 2^wordsize determined
            //   by the magic numbers, Pw & Qw.
            //
            _S            = new int[2*(_noRounds + 1)];

            _S[0] = P32;
            for (int i=1; i < _S.Length; i++)
            {
                _S[i] = (_S[i-1] + Q32);
            }

            //
            // Phase 3:
            //   Mix in the user's secret key in 3 passes over the arrays S & L.
            //   The max of the arrays sizes is used as the loop control
            //
            int iter;

            if (L.Length > _S.Length)
            {
                iter = 3 * L.Length;
            }
            else
            {
                iter = 3 * _S.Length;
            }

            int A = 0, B = 0;
            int ii = 0, jj = 0;

            for (int k = 0; k < iter; k++)
            {
                A = _S[ii] = RotateLeft(_S[ii] + A + B, 3);
                B =  L[jj] = RotateLeft( L[jj] + A + B, A+B);
                ii = (ii+1) % _S.Length;
                jj = (jj+1) %  L.Length;
            }
        }

        /**
        * Encrypt the given block starting at the given offset and place
        * the result in the provided buffer starting at the given offset.
        *
        * @param  in     in byte buffer containing data to encrypt
        * @param  inOff  offset into src buffer
        * @param  out     out buffer where encrypted data is written
        * @param  outOff  offset into out buffer
        */
        private int EncryptBlock(
            byte[]  input,
            int     inOff,
            byte[]  outBytes,
            int     outOff)
        {
            int A = BytesToWord(input, inOff) + _S[0];
            int B = BytesToWord(input, inOff + 4) + _S[1];

            for (int i = 1; i <= _noRounds; i++)
            {
                A = RotateLeft(A ^ B, B) + _S[2*i];
                B = RotateLeft(B ^ A, A) + _S[2*i+1];
            }

            WordToBytes(A, outBytes, outOff);
            WordToBytes(B, outBytes, outOff + 4);

            return 2 * 4;
        }

        private int DecryptBlock(
            byte[]  input,
            int     inOff,
            byte[]  outBytes,
            int     outOff)
        {
            int A = BytesToWord(input, inOff);
            int B = BytesToWord(input, inOff + 4);

            for (int i = _noRounds; i >= 1; i--)
            {
                B = RotateRight(B - _S[2*i+1], A) ^ A;
                A = RotateRight(A - _S[2*i],   B) ^ B;
            }

            WordToBytes(A - _S[0], outBytes, outOff);
            WordToBytes(B - _S[1], outBytes, outOff + 4);

            return 2 * 4;
        }


        //////////////////////////////////////////////////////////////
        //
        // PRIVATE Helper Methods
        //
        //////////////////////////////////////////////////////////////

        /**
        * Perform a left "spin" of the word. The rotation of the given
        * word <em>x</em> is rotated left by <em>y</em> bits.
        * Only the <em>lg(32)</em> low-order bits of <em>y</em>
        * are used to determine the rotation amount. Here it is
        * assumed that the wordsize used is a power of 2.
        *
        * @param  x  word to rotate
        * @param  y    number of bits to rotate % 32
        */
        private int RotateLeft(int x, int y) {
            return ((int)  (  (uint) (x << (y & (32-1))) |
                              ((uint) x >> (32 - (y & (32-1)))) )
                   );
        }

        /**
        * Perform a right "spin" of the word. The rotation of the given
        * word <em>x</em> is rotated left by <em>y</em> bits.
        * Only the <em>lg(32)</em> low-order bits of <em>y</em>
        * are used to determine the rotation amount. Here it is
        * assumed that the wordsize used is a power of 2.
        *
        * @param  x  word to rotate
        * @param  y    number of bits to rotate % 32
        */
        private int RotateRight(int x, int y) {
            return ((int) (     ((uint) x >> (y & (32-1))) |
                                (uint) (x << (32 - (y & (32-1))))   )
                   );
        }

        private int BytesToWord(
            byte[]  src,
            int     srcOff)
        {
            return (src[srcOff] & 0xff) | ((src[srcOff + 1] & 0xff) << 8)
                | ((src[srcOff + 2] & 0xff) << 16) | ((src[srcOff + 3] & 0xff) << 24);
        }

        private void WordToBytes(
            int    word,
            byte[]  dst,
            int     dstOff)
        {
            dst[dstOff] = (byte)word;
            dst[dstOff + 1] = (byte)(word >> 8);
            dst[dstOff + 2] = (byte)(word >> 16);
            dst[dstOff + 3] = (byte)(word >> 24);
        }
    }

}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.