RC6Engine.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Engines » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Engines » RC6Engine.cs
using System;

using Org.BouncyCastle.Crypto.Parameters;

namespace Org.BouncyCastle.Crypto.Engines{
    /**
    * An RC6 engine.
    */
    public class RC6Engine
    : IBlockCipher
    {
        private static readonly int wordSize = 32;
        private static readonly int bytesPerWord = wordSize / 8;

        /*
        * the number of rounds to perform
        */
        private static readonly int _noRounds = 20;

        /*
        * the expanded key array of size 2*(rounds + 1)
        */
        private int [] _S;

        /*
        * our "magic constants" for wordSize 32
        *
        * Pw = Odd((e-2) * 2^wordsize)
        * Qw = Odd((o-2) * 2^wordsize)
        *
        * where e is the base of natural logarithms (2.718281828...)
        * and o is the golden ratio (1.61803398...)
        */
        private static readonly int    P32 = unchecked((int) 0xb7e15163);
        private static readonly int    Q32 = unchecked((int) 0x9e3779b9);

        private static readonly int    LGW = 5;        // log2(32)

        private bool forEncryption;

        /**
        * Create an instance of the RC6 encryption algorithm
        * and set some defaults
        */
        public RC6Engine()
        {
//            _S            = null;
        }

        public string AlgorithmName
        {
            get { return "RC6"; }
        }

    public bool IsPartialBlockOkay
    {
      get { return false; }
    }

    public int GetBlockSize()
        {
            return 4 * bytesPerWord;
        }

        /**
        * initialise a RC5-32 cipher.
        *
        * @param forEncryption whether or not we are for encryption.
        * @param parameters the parameters required to set up the cipher.
        * @exception ArgumentException if the parameters argument is
        * inappropriate.
        */
        public void Init(
            bool        forEncryption,
            ICipherParameters  parameters)
        {
            if (!(parameters is KeyParameter))
                throw new ArgumentException("invalid parameter passed to RC6 init - " + parameters.GetType().ToString());

            this.forEncryption = forEncryption;

      KeyParameter p = (KeyParameter)parameters;
      SetKey(p.GetKey());
        }

        public int ProcessBlock(
            byte[]  input,
            int    inOff,
            byte[]  output,
            int    outOff)
        {
      int blockSize = GetBlockSize();
      if (_S == null)
        throw new InvalidOperationException("RC6 engine not initialised");
      if ((inOff + blockSize) > input.Length)
        throw new DataLengthException("input buffer too short");
      if ((outOff + blockSize) > output.Length)
        throw new DataLengthException("output buffer too short");

      return (forEncryption)
        ?  EncryptBlock(input, inOff, output, outOff)
        :  DecryptBlock(input, inOff, output, outOff);
        }

    public void Reset()
        {
        }

        /**
        * Re-key the cipher.
        *
        * @param inKey the key to be used
        */
        private void SetKey(
            byte[] key)
        {
            //
            // KEY EXPANSION:
            //
            // There are 3 phases to the key expansion.
            //
            // Phase 1:
            //   Copy the secret key K[0...b-1] into an array L[0..c-1] of
            //   c = ceil(b/u), where u = wordSize/8 in little-endian order.
            //   In other words, we fill up L using u consecutive key bytes
            //   of K. Any unfilled byte positions in L are zeroed. In the
            //   case that b = c = 0, set c = 1 and L[0] = 0.
            //
            // compute number of dwords
            int c = (key.Length + (bytesPerWord - 1)) / bytesPerWord;
            if (c == 0)
            {
                c = 1;
            }
            int[]   L = new int[(key.Length + bytesPerWord - 1) / bytesPerWord];

            // load all key bytes into array of key dwords
            for (int i = key.Length - 1; i >= 0; i--)
            {
                L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);
            }

            //
            // Phase 2:
            //   Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.
            //   Initialize S to a particular fixed pseudo-random bit pattern
            //   using an arithmetic progression modulo 2^wordsize determined
            //   by the magic numbers, Pw & Qw.
            //
            _S            = new int[2+2*_noRounds+2];

            _S[0] = P32;
            for (int i=1; i < _S.Length; i++)
            {
                _S[i] = (_S[i-1] + Q32);
            }

            //
            // Phase 3:
            //   Mix in the user's secret key in 3 passes over the arrays S & L.
            //   The max of the arrays sizes is used as the loop control
            //
            int iter;

            if (L.Length > _S.Length)
            {
                iter = 3 * L.Length;
            }
            else
            {
                iter = 3 * _S.Length;
            }

            int A = 0;
            int B = 0;
            int ii = 0, jj = 0;

            for (int k = 0; k < iter; k++)
            {
                A = _S[ii] = RotateLeft(_S[ii] + A + B, 3);
                B =  L[jj] = RotateLeft( L[jj] + A + B, A+B);
                ii = (ii+1) % _S.Length;
                jj = (jj+1) %  L.Length;
            }
        }

        private int EncryptBlock(
            byte[]  input,
            int     inOff,
            byte[]  outBytes,
            int     outOff)
        {
            // load A,B,C and D registers from in.
            int A = BytesToWord(input, inOff);
            int B = BytesToWord(input, inOff + bytesPerWord);
            int C = BytesToWord(input, inOff + bytesPerWord*2);
            int D = BytesToWord(input, inOff + bytesPerWord*3);

            // Do pseudo-round #0: pre-whitening of B and D
            B += _S[0];
            D += _S[1];

            // perform round #1,#2 ... #ROUNDS of encryption
            for (int i = 1; i <= _noRounds; i++)
            {
                int t = 0,u = 0;

                t = B*(2*B+1);
                t = RotateLeft(t,5);

                u = D*(2*D+1);
                u = RotateLeft(u,5);

                A ^= t;
                A = RotateLeft(A,u);
                A += _S[2*i];

                C ^= u;
                C = RotateLeft(C,t);
                C += _S[2*i+1];

                int temp = A;
                A = B;
                B = C;
                C = D;
                D = temp;
            }
            // do pseudo-round #(ROUNDS+1) : post-whitening of A and C
            A += _S[2*_noRounds+2];
            C += _S[2*_noRounds+3];

            // store A, B, C and D registers to out
            WordToBytes(A, outBytes, outOff);
            WordToBytes(B, outBytes, outOff + bytesPerWord);
            WordToBytes(C, outBytes, outOff + bytesPerWord*2);
            WordToBytes(D, outBytes, outOff + bytesPerWord*3);

            return 4 * bytesPerWord;
        }

        private int DecryptBlock(
            byte[]  input,
            int     inOff,
            byte[]  outBytes,
            int     outOff)
        {
            // load A,B,C and D registers from out.
            int A = BytesToWord(input, inOff);
            int B = BytesToWord(input, inOff + bytesPerWord);
            int C = BytesToWord(input, inOff + bytesPerWord*2);
            int D = BytesToWord(input, inOff + bytesPerWord*3);

            // Undo pseudo-round #(ROUNDS+1) : post whitening of A and C
            C -= _S[2*_noRounds+3];
            A -= _S[2*_noRounds+2];

            // Undo round #ROUNDS, .., #2,#1 of encryption
            for (int i = _noRounds; i >= 1; i--)
            {
                int t=0,u = 0;

                int temp = D;
                D = C;
                C = B;
                B = A;
                A = temp;

                t = B*(2*B+1);
                t = RotateLeft(t, LGW);

                u = D*(2*D+1);
                u = RotateLeft(u, LGW);

                C -= _S[2*i+1];
                C = RotateRight(C,t);
                C ^= u;

                A -= _S[2*i];
                A = RotateRight(A,u);
                A ^= t;

            }
            // Undo pseudo-round #0: pre-whitening of B and D
            D -= _S[1];
            B -= _S[0];

            WordToBytes(A, outBytes, outOff);
            WordToBytes(B, outBytes, outOff + bytesPerWord);
            WordToBytes(C, outBytes, outOff + bytesPerWord*2);
            WordToBytes(D, outBytes, outOff + bytesPerWord*3);

            return 4 * bytesPerWord;
        }


        //////////////////////////////////////////////////////////////
        //
        // PRIVATE Helper Methods
        //
        //////////////////////////////////////////////////////////////

        /**
        * Perform a left "spin" of the word. The rotation of the given
        * word <em>x</em> is rotated left by <em>y</em> bits.
        * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
        * are used to determine the rotation amount. Here it is
        * assumed that the wordsize used is a power of 2.
        *
        * @param x word to rotate
        * @param y number of bits to rotate % wordSize
        */
        private int RotateLeft(int x, int y)
        {
            return ((int)((uint)(x << (y & (wordSize-1)))
        | ((uint) x >> (wordSize - (y & (wordSize-1))))));
        }

        /**
        * Perform a right "spin" of the word. The rotation of the given
        * word <em>x</em> is rotated left by <em>y</em> bits.
        * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
        * are used to determine the rotation amount. Here it is
        * assumed that the wordsize used is a power of 2.
        *
        * @param x word to rotate
        * @param y number of bits to rotate % wordSize
        */
        private int RotateRight(int x, int y) 
    {
            return ((int)(((uint) x >> (y & (wordSize-1)))
        | (uint)(x << (wordSize - (y & (wordSize-1))))));
        }

        private int BytesToWord(
            byte[]  src,
            int    srcOff)
        {
            int word = 0;

            for (int i = bytesPerWord - 1; i >= 0; i--)
            {
                word = (word << 8) + (src[i + srcOff] & 0xff);
            }

            return word;
        }

        private void WordToBytes(
            int    word,
            byte[]  dst,
            int    dstOff)
        {
            for (int i = 0; i < bytesPerWord; i++)
            {
                dst[i + dstOff] = (byte)word;
                word = (int) ((uint) word >> 8);
            }
        }
    }

}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.