CMac.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Macs » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Macs » CMac.cs
using System;

using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Paddings;

namespace Org.BouncyCastle.Crypto.Macs{
  /**
  * CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
  * <p>
  * CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC
  * </p><p>
  * CMAC is a NIST recomendation - see 
  * csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf
  * </p><p>
  * CMAC/OMAC1 is a blockcipher-based message authentication code designed and
  * analyzed by Tetsu Iwata and Kaoru Kurosawa.
  * </p><p>
  * CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message 
  * Authentication Code). OMAC stands for One-Key CBC MAC.
  * </p><p>
  * It supports 128- or 64-bits block ciphers, with any key size, and returns
  * a MAC with dimension less or equal to the block size of the underlying 
  * cipher.
  * </p>
  */
  public class CMac
    : IMac
  {
    private const byte CONSTANT_128 = (byte)0x87;
    private const byte CONSTANT_64 = (byte)0x1b;

    private byte[] ZEROES;

    private byte[] mac;

    private byte[] buf;
    private int bufOff;
    private IBlockCipher cipher;

    private int macSize;

    private byte[] L, Lu, Lu2;

    /**
    * create a standard MAC based on a CBC block cipher (64 or 128 bit block).
    * This will produce an authentication code the length of the block size
    * of the cipher.
    *
    * @param cipher the cipher to be used as the basis of the MAC generation.
    */
    public CMac(
      IBlockCipher cipher)
      : this(cipher, cipher.GetBlockSize() * 8)
    {
    }

    /**
    * create a standard MAC based on a block cipher with the size of the
    * MAC been given in bits.
    * <p/>
    * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
    * or 16 bits if being used as a data authenticator (FIPS Publication 113),
    * and in general should be less than the size of the block cipher as it reduces
    * the chance of an exhaustive attack (see Handbook of Applied Cryptography).
    *
    * @param cipher        the cipher to be used as the basis of the MAC generation.
    * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8 and @lt;= 128.
    */
    public CMac(
      IBlockCipher  cipher,
      int        macSizeInBits)
    {
      if ((macSizeInBits % 8) != 0)
        throw new ArgumentException("MAC size must be multiple of 8");

      if (macSizeInBits > (cipher.GetBlockSize() * 8))
      {
        throw new ArgumentException(
          "MAC size must be less or equal to "
            + (cipher.GetBlockSize() * 8));
      }

      if (cipher.GetBlockSize() != 8 && cipher.GetBlockSize() != 16)
      {
        throw new ArgumentException(
          "Block size must be either 64 or 128 bits");
      }

      this.cipher = new CbcBlockCipher(cipher);
      this.macSize = macSizeInBits / 8;

      mac = new byte[cipher.GetBlockSize()];

      buf = new byte[cipher.GetBlockSize()];

      ZEROES = new byte[cipher.GetBlockSize()];

      bufOff = 0;
    }

    public string AlgorithmName
    {
      get { return cipher.AlgorithmName; }
    }

    private byte[] doubleLu(
      byte[] inBytes)
    {
      int FirstBit = (inBytes[0] & 0xFF) >> 7;
      byte[] ret = new byte[inBytes.Length];
      for (int i = 0; i < inBytes.Length - 1; i++)
      {
        ret[i] = (byte)((inBytes[i] << 1) + ((inBytes[i + 1] & 0xFF) >> 7));
      }
      ret[inBytes.Length - 1] = (byte)(inBytes[inBytes.Length - 1] << 1);
      if (FirstBit == 1)
      {
        ret[inBytes.Length - 1] ^= inBytes.Length == 16 ? CONSTANT_128 : CONSTANT_64;
      }
      return ret;
    }

    public void Init(
      ICipherParameters parameters)
    {
      Reset();

      cipher.Init(true, parameters);

      //initializes the L, Lu, Lu2 numbers
      L = new byte[ZEROES.Length];
      cipher.ProcessBlock(ZEROES, 0, L, 0);
      Lu = doubleLu(L);
      Lu2 = doubleLu(Lu);

      cipher.Init(true, parameters);
    }

    public int GetMacSize()
    {
      return macSize;
    }

    public void Update(
      byte input)
    {
      if (bufOff == buf.Length)
      {
        cipher.ProcessBlock(buf, 0, mac, 0);
        bufOff = 0;
      }

      buf[bufOff++] = input;
    }

    public void BlockUpdate(
      byte[]  inBytes,
      int    inOff,
      int    len)
    {
      if (len < 0)
        throw new ArgumentException("Can't have a negative input length!");

      int blockSize = cipher.GetBlockSize();
      int gapLen = blockSize - bufOff;

      if (len > gapLen)
      {
        Array.Copy(inBytes, inOff, buf, bufOff, gapLen);

        cipher.ProcessBlock(buf, 0, mac, 0);

        bufOff = 0;
        len -= gapLen;
        inOff += gapLen;

        while (len > blockSize)
        {
          cipher.ProcessBlock(inBytes, inOff, mac, 0);

          len -= blockSize;
          inOff += blockSize;
        }
      }

      Array.Copy(inBytes, inOff, buf, bufOff, len);

      bufOff += len;
    }

    public int DoFinal(
      byte[]  outBytes,
      int    outOff)
    {
      int blockSize = cipher.GetBlockSize();

      byte[] lu;
      if (bufOff == blockSize)
      {
        lu = Lu;
      }
      else
      {
        new ISO7816d4Padding().AddPadding(buf, bufOff);
        lu = Lu2;
      }

      for (int i = 0; i < mac.Length; i++)
      {
        buf[i] ^= lu[i];
      }

      cipher.ProcessBlock(buf, 0, mac, 0);

      Array.Copy(mac, 0, outBytes, outOff, macSize);

      Reset();

      return macSize;
    }

    /**
    * Reset the mac generator.
    */
    public void Reset()
    {
      /*
      * clean the buffer.
      */
      Array.Clear(buf, 0, buf.Length);
      bufOff = 0;

      /*
      * Reset the underlying cipher.
      */
      cipher.Reset();
    }
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.