CfbBlockCipherMac.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Macs » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Macs » CfbBlockCipherMac.cs
using System;

using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Paddings;
using Org.BouncyCastle.Crypto.Parameters;

namespace Org.BouncyCastle.Crypto.Macs{
    /**
    * implements a Cipher-FeedBack (CFB) mode on top of a simple cipher.
    */
    class MacCFBBlockCipher
    : IBlockCipher
    {
        private byte[] IV;
        private byte[] cfbV;
        private byte[] cfbOutV;

    private readonly int blockSize;
        private readonly IBlockCipher cipher;

    /**
        * Basic constructor.
        *
        * @param cipher the block cipher to be used as the basis of the
        * feedback mode.
        * @param blockSize the block size in bits (note: a multiple of 8)
        */
        public MacCFBBlockCipher(
            IBlockCipher  cipher,
            int        bitBlockSize)
        {
            this.cipher = cipher;
            this.blockSize = bitBlockSize / 8;

            this.IV = new byte[cipher.GetBlockSize()];
            this.cfbV = new byte[cipher.GetBlockSize()];
            this.cfbOutV = new byte[cipher.GetBlockSize()];
        }

    /**
        * Initialise the cipher and, possibly, the initialisation vector (IV).
        * If an IV isn't passed as part of the parameter, the IV will be all zeros.
        * An IV which is too short is handled in FIPS compliant fashion.
        *
        * @param param the key and other data required by the cipher.
        * @exception ArgumentException if the parameters argument is
        * inappropriate.
        */
    public void Init(
      bool        forEncryption,
            ICipherParameters  parameters)
        {
      if (parameters is ParametersWithIV)
            {
                ParametersWithIV ivParam = (ParametersWithIV)parameters;
                byte[] iv = ivParam.GetIV();

                if (iv.Length < IV.Length)
                {
                    Array.Copy(iv, 0, IV, IV.Length - iv.Length, iv.Length);
                }
                else
                {
                    Array.Copy(iv, 0, IV, 0, IV.Length);
                }

        parameters = ivParam.Parameters;
            }

      Reset();

      cipher.Init(true, parameters);
        }

        /**
        * return the algorithm name and mode.
        *
        * @return the name of the underlying algorithm followed by "/CFB"
        * and the block size in bits.
        */
        public string AlgorithmName
        {
      get { return cipher.AlgorithmName + "/CFB" + (blockSize * 8); }
        }

    public bool IsPartialBlockOkay
    {
      get { return true; }
    }

    /**
        * return the block size we are operating at.
        *
        * @return the block size we are operating at (in bytes).
        */
        public int GetBlockSize()
        {
            return blockSize;
        }

    /**
        * Process one block of input from the array in and write it to
        * the out array.
        *
        * @param in the array containing the input data.
        * @param inOff offset into the in array the data starts at.
        * @param out the array the output data will be copied into.
        * @param outOff the offset into the out array the output will start at.
        * @exception DataLengthException if there isn't enough data in in, or
        * space in out.
        * @exception InvalidOperationException if the cipher isn't initialised.
        * @return the number of bytes processed and produced.
        */
        public int ProcessBlock(
            byte[]  input,
            int    inOff,
            byte[]  outBytes,
            int    outOff)
        {
            if ((inOff + blockSize) > input.Length)
                throw new DataLengthException("input buffer too short");

      if ((outOff + blockSize) > outBytes.Length)
                throw new DataLengthException("output buffer too short");

      cipher.ProcessBlock(cfbV, 0, cfbOutV, 0);

            //
            // XOR the cfbV with the plaintext producing the cipher text
            //
            for (int i = 0; i < blockSize; i++)
            {
                outBytes[outOff + i] = (byte)(cfbOutV[i] ^ input[inOff + i]);
            }

      //
            // change over the input block.
            //
            Array.Copy(cfbV, blockSize, cfbV, 0, cfbV.Length - blockSize);
            Array.Copy(outBytes, outOff, cfbV, cfbV.Length - blockSize, blockSize);

      return blockSize;
        }

    /**
        * reset the chaining vector back to the IV and reset the underlying
        * cipher.
        */
        public void Reset()
        {
      IV.CopyTo(cfbV, 0);

      cipher.Reset();
        }

    public void GetMacBlock(
            byte[] mac)
        {
            cipher.ProcessBlock(cfbV, 0, mac, 0);
        }
    }

  public class CfbBlockCipherMac
    : IMac
    {
        private byte[] mac;
        private byte[] Buffer;
        private int bufOff;
        private MacCFBBlockCipher cipher;
        private IBlockCipherPadding padding;
        private int macSize;

    /**
        * create a standard MAC based on a CFB block cipher. This will produce an
        * authentication code half the length of the block size of the cipher, with
        * the CFB mode set to 8 bits.
        *
        * @param cipher the cipher to be used as the basis of the MAC generation.
        */
        public CfbBlockCipherMac(
            IBlockCipher cipher)
      : this(cipher, 8, (cipher.GetBlockSize() * 8) / 2, null)
    {
    }

    /**
        * create a standard MAC based on a CFB block cipher. This will produce an
        * authentication code half the length of the block size of the cipher, with
        * the CFB mode set to 8 bits.
        *
        * @param cipher the cipher to be used as the basis of the MAC generation.
        * @param padding the padding to be used.
        */
        public CfbBlockCipherMac(
            IBlockCipher    cipher,
            IBlockCipherPadding  padding)
      : this(cipher, 8, (cipher.GetBlockSize() * 8) / 2, padding)
    {
    }

    /**
        * create a standard MAC based on a block cipher with the size of the
        * MAC been given in bits. This class uses CFB mode as the basis for the
        * MAC generation.
        * <p>
        * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
        * or 16 bits if being used as a data authenticator (FIPS Publication 113),
        * and in general should be less than the size of the block cipher as it reduces
        * the chance of an exhaustive attack (see Handbook of Applied Cryptography).
        * </p>
        * @param cipher the cipher to be used as the basis of the MAC generation.
        * @param cfbBitSize the size of an output block produced by the CFB mode.
        * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8.
        */
        public CfbBlockCipherMac(
            IBlockCipher  cipher,
            int        cfbBitSize,
            int        macSizeInBits)
      : this(cipher, cfbBitSize, macSizeInBits, null)
    {
    }

    /**
        * create a standard MAC based on a block cipher with the size of the
        * MAC been given in bits. This class uses CFB mode as the basis for the
        * MAC generation.
        * <p>
        * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
        * or 16 bits if being used as a data authenticator (FIPS Publication 113),
        * and in general should be less than the size of the block cipher as it reduces
        * the chance of an exhaustive attack (see Handbook of Applied Cryptography).
        * </p>
        * @param cipher the cipher to be used as the basis of the MAC generation.
        * @param cfbBitSize the size of an output block produced by the CFB mode.
        * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8.
        * @param padding a padding to be used.
        */
        public CfbBlockCipherMac(
            IBlockCipher    cipher,
            int          cfbBitSize,
            int          macSizeInBits,
            IBlockCipherPadding  padding)
        {
            if ((macSizeInBits % 8) != 0)
                throw new ArgumentException("MAC size must be multiple of 8");

      mac = new byte[cipher.GetBlockSize()];

      this.cipher = new MacCFBBlockCipher(cipher, cfbBitSize);
            this.padding = padding;
            this.macSize = macSizeInBits / 8;

      Buffer = new byte[this.cipher.GetBlockSize()];
            bufOff = 0;
        }

    public string AlgorithmName
        {
            get { return cipher.AlgorithmName; }
        }

    public void Init(
            ICipherParameters parameters)
        {
            Reset();

      cipher.Init(true, parameters);
        }

    public int GetMacSize()
        {
            return macSize;
        }

    public void Update(
            byte input)
        {
            if (bufOff == Buffer.Length)
            {
        cipher.ProcessBlock(Buffer, 0, mac, 0);
                bufOff = 0;
            }

      Buffer[bufOff++] = input;
        }

    public void BlockUpdate(
            byte[]  input,
            int    inOff,
            int    len)
        {
            if (len < 0)
                throw new ArgumentException("Can't have a negative input length!");

      int blockSize = cipher.GetBlockSize();
            int resultLen = 0;
            int gapLen = blockSize - bufOff;

      if (len > gapLen)
            {
                Array.Copy(input, inOff, Buffer, bufOff, gapLen);

        resultLen += cipher.ProcessBlock(Buffer, 0, mac, 0);

        bufOff = 0;
                len -= gapLen;
                inOff += gapLen;

        while (len > blockSize)
                {
                    resultLen += cipher.ProcessBlock(input, inOff, mac, 0);

          len -= blockSize;
                    inOff += blockSize;
                }
            }

      Array.Copy(input, inOff, Buffer, bufOff, len);

      bufOff += len;
        }

    public int DoFinal(
            byte[]  output,
            int    outOff)
        {
            int blockSize = cipher.GetBlockSize();

            // pad with zeroes
            if (this.padding == null)
            {
                while (bufOff < blockSize)
                {
                    Buffer[bufOff++] = 0;
                }
            }
            else
            {
                padding.AddPadding(Buffer, bufOff);
            }

      cipher.ProcessBlock(Buffer, 0, mac, 0);

      cipher.GetMacBlock(mac);

      Array.Copy(mac, 0, output, outOff, macSize);

      Reset();

      return macSize;
        }

        /**
        * Reset the mac generator.
        */
        public void Reset()
        {
            // Clear the buffer.
      Array.Clear(Buffer, 0, Buffer.Length);
            bufOff = 0;

      // Reset the underlying cipher.
            cipher.Reset();
        }
    }

}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.