CfbBlockCipher.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Modes » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Modes » CfbBlockCipher.cs
using System;

using Org.BouncyCastle.Crypto.Parameters;

namespace Org.BouncyCastle.Crypto.Modes{
    /**
    * implements a Cipher-FeedBack (CFB) mode on top of a simple cipher.
    */
    public class CfbBlockCipher
    : IBlockCipher
    {
        private byte[]  IV;
        private byte[]  cfbV;
        private byte[]  cfbOutV;
    private bool  encrypting;

    private readonly int      blockSize;
        private readonly IBlockCipher  cipher;

    /**
        * Basic constructor.
        *
        * @param cipher the block cipher to be used as the basis of the
        * feedback mode.
        * @param blockSize the block size in bits (note: a multiple of 8)
        */
        public CfbBlockCipher(
            IBlockCipher cipher,
            int          bitBlockSize)
        {
            this.cipher = cipher;
            this.blockSize = bitBlockSize / 8;
            this.IV = new byte[cipher.GetBlockSize()];
            this.cfbV = new byte[cipher.GetBlockSize()];
            this.cfbOutV = new byte[cipher.GetBlockSize()];
        }
        /**
        * return the underlying block cipher that we are wrapping.
        *
        * @return the underlying block cipher that we are wrapping.
        */
        public IBlockCipher GetUnderlyingCipher()
        {
            return cipher;
        }
        /**
        * Initialise the cipher and, possibly, the initialisation vector (IV).
        * If an IV isn't passed as part of the parameter, the IV will be all zeros.
        * An IV which is too short is handled in FIPS compliant fashion.
        *
        * @param forEncryption if true the cipher is initialised for
        *  encryption, if false for decryption.
        * @param param the key and other data required by the cipher.
        * @exception ArgumentException if the parameters argument is
        * inappropriate.
        */
        public void Init(
            bool forEncryption,
            ICipherParameters parameters)
        {
            this.encrypting = forEncryption;
            if (parameters is ParametersWithIV)
            {
                ParametersWithIV ivParam = (ParametersWithIV) parameters;
                byte[] iv = ivParam.GetIV();
                int diff = IV.Length - iv.Length;
                Array.Copy(iv, 0, IV, diff, iv.Length);
                Array.Clear(IV, 0, diff);

                parameters = ivParam.Parameters;
            }
            Reset();
            cipher.Init(true, parameters);
        }
        /**
        * return the algorithm name and mode.
        *
        * @return the name of the underlying algorithm followed by "/CFB"
        * and the block size in bits.
        */
        public string AlgorithmName
        {
            get { return cipher.AlgorithmName + "/CFB" + (blockSize * 8); }
        }

    public bool IsPartialBlockOkay
    {
      get { return true; }
    }

    /**
        * return the block size we are operating at.
        *
        * @return the block size we are operating at (in bytes).
        */
        public int GetBlockSize()
        {
            return blockSize;
        }

    /**
        * Process one block of input from the array in and write it to
        * the out array.
        *
        * @param in the array containing the input data.
        * @param inOff offset into the in array the data starts at.
        * @param out the array the output data will be copied into.
        * @param outOff the offset into the out array the output will start at.
        * @exception DataLengthException if there isn't enough data in in, or
        * space in out.
        * @exception InvalidOperationException if the cipher isn't initialised.
        * @return the number of bytes processed and produced.
        */
        public int ProcessBlock(
            byte[]  input,
            int    inOff,
            byte[]  output,
            int    outOff)
        {
            return (encrypting)
        ?  EncryptBlock(input, inOff, output, outOff)
        :  DecryptBlock(input, inOff, output, outOff);
        }

    /**
        * Do the appropriate processing for CFB mode encryption.
        *
        * @param in the array containing the data to be encrypted.
        * @param inOff offset into the in array the data starts at.
        * @param out the array the encrypted data will be copied into.
        * @param outOff the offset into the out array the output will start at.
        * @exception DataLengthException if there isn't enough data in in, or
        * space in out.
        * @exception InvalidOperationException if the cipher isn't initialised.
        * @return the number of bytes processed and produced.
        */
        public int EncryptBlock(
            byte[]      input,
            int         inOff,
            byte[]      outBytes,
            int         outOff)
        {
            if ((inOff + blockSize) > input.Length)
            {
                throw new DataLengthException("input buffer too short");
            }
            if ((outOff + blockSize) > outBytes.Length)
            {
                throw new DataLengthException("output buffer too short");
            }
            cipher.ProcessBlock(cfbV, 0, cfbOutV, 0);
            //
            // XOR the cfbV with the plaintext producing the ciphertext
            //
            for (int i = 0; i < blockSize; i++)
            {
                outBytes[outOff + i] = (byte)(cfbOutV[i] ^ input[inOff + i]);
            }
            //
            // change over the input block.
            //
            Array.Copy(cfbV, blockSize, cfbV, 0, cfbV.Length - blockSize);
            Array.Copy(outBytes, outOff, cfbV, cfbV.Length - blockSize, blockSize);
            return blockSize;
        }
        /**
        * Do the appropriate processing for CFB mode decryption.
        *
        * @param in the array containing the data to be decrypted.
        * @param inOff offset into the in array the data starts at.
        * @param out the array the encrypted data will be copied into.
        * @param outOff the offset into the out array the output will start at.
        * @exception DataLengthException if there isn't enough data in in, or
        * space in out.
        * @exception InvalidOperationException if the cipher isn't initialised.
        * @return the number of bytes processed and produced.
        */
        public int DecryptBlock(
            byte[]  input,
            int    inOff,
            byte[]  outBytes,
            int    outOff)
        {
            if ((inOff + blockSize) > input.Length)
            {
                throw new DataLengthException("input buffer too short");
            }
            if ((outOff + blockSize) > outBytes.Length)
            {
                throw new DataLengthException("output buffer too short");
            }
            cipher.ProcessBlock(cfbV, 0, cfbOutV, 0);
            //
            // change over the input block.
            //
            Array.Copy(cfbV, blockSize, cfbV, 0, cfbV.Length - blockSize);
            Array.Copy(input, inOff, cfbV, cfbV.Length - blockSize, blockSize);
            //
            // XOR the cfbV with the ciphertext producing the plaintext
            //
            for (int i = 0; i < blockSize; i++)
            {
                outBytes[outOff + i] = (byte)(cfbOutV[i] ^ input[inOff + i]);
            }
            return blockSize;
        }
        /**
        * reset the chaining vector back to the IV and reset the underlying
        * cipher.
        */
        public void Reset()
        {
            Array.Copy(IV, 0, cfbV, 0, IV.Length);
            cipher.Reset();
        }
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.