Tnaf.cs :  » PDF » iTextSharp » Org » BouncyCastle » Math » EC » Abc » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Math » EC » Abc » Tnaf.cs
using System;

namespace Org.BouncyCastle.Math.EC.Abc{
  /**
  * Class holding methods for point multiplication based on the window
  * τ-adic nonadjacent form (WTNAF). The algorithms are based on the
  * paper "Improved Algorithms for Arithmetic on Anomalous Binary Curves"
  * by Jerome A. Solinas. The paper first appeared in the Proceedings of
  * Crypto 1997.
  */
  internal class Tnaf
  {
    private static readonly BigInteger MinusOne = BigInteger.One.Negate();
    private static readonly BigInteger MinusTwo = BigInteger.Two.Negate();
    private static readonly BigInteger MinusThree = BigInteger.Three.Negate();
    private static readonly BigInteger Four = BigInteger.ValueOf(4);

    /**
    * The window width of WTNAF. The standard value of 4 is slightly less
    * than optimal for running time, but keeps space requirements for
    * precomputation low. For typical curves, a value of 5 or 6 results in
    * a better running time. When changing this value, the
    * <code>&#945;<sub>u</sub></code>'s must be computed differently, see
    * e.g. "Guide to Elliptic Curve Cryptography", Darrel Hankerson,
    * Alfred Menezes, Scott Vanstone, Springer-Verlag New York Inc., 2004,
    * p. 121-122
    */
    public const sbyte Width = 4;

    /**
    * 2<sup>4</sup>
    */
    public const sbyte Pow2Width = 16;

    /**
    * The <code>&#945;<sub>u</sub></code>'s for <code>a=0</code> as an array
    * of <code>ZTauElement</code>s.
    */
    public static readonly ZTauElement[] Alpha0 =
    {
      null,
      new ZTauElement(BigInteger.One, BigInteger.Zero), null,
      new ZTauElement(MinusThree, MinusOne), null,
      new ZTauElement(MinusOne, MinusOne), null,
      new ZTauElement(BigInteger.One, MinusOne), null
    };

    /**
    * The <code>&#945;<sub>u</sub></code>'s for <code>a=0</code> as an array
    * of TNAFs.
    */
    public static readonly sbyte[][] Alpha0Tnaf =
    {
      null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, 1}
    };

    /**
    * The <code>&#945;<sub>u</sub></code>'s for <code>a=1</code> as an array
    * of <code>ZTauElement</code>s.
    */
    public static readonly ZTauElement[] Alpha1 =
    {
      null,
      new ZTauElement(BigInteger.One, BigInteger.Zero), null,
      new ZTauElement(MinusThree, BigInteger.One), null,
      new ZTauElement(MinusOne, BigInteger.One), null,
      new ZTauElement(BigInteger.One, BigInteger.One), null
    };

    /**
    * The <code>&#945;<sub>u</sub></code>'s for <code>a=1</code> as an array
    * of TNAFs.
    */
    public static readonly sbyte[][] Alpha1Tnaf =
    {
      null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, -1}
    };

    /**
    * Computes the norm of an element <code>&#955;</code> of
    * <code><b>Z</b>[&#964;]</code>.
    * @param mu The parameter <code>&#956;</code> of the elliptic curve.
    * @param lambda The element <code>&#955;</code> of
    * <code><b>Z</b>[&#964;]</code>.
    * @return The norm of <code>&#955;</code>.
    */
    public static BigInteger Norm(sbyte mu, ZTauElement lambda)
    {
      BigInteger norm;

      // s1 = u^2
      BigInteger s1 = lambda.u.Multiply(lambda.u);

      // s2 = u * v
      BigInteger s2 = lambda.u.Multiply(lambda.v);

      // s3 = 2 * v^2
      BigInteger s3 = lambda.v.Multiply(lambda.v).ShiftLeft(1);

      if (mu == 1)
      {
        norm = s1.Add(s2).Add(s3);
      }
      else if (mu == -1)
      {
        norm = s1.Subtract(s2).Add(s3);
      }
      else
      {
        throw new ArgumentException("mu must be 1 or -1");
      }

      return norm;
    }

    /**
    * Computes the norm of an element <code>&#955;</code> of
    * <code><b>R</b>[&#964;]</code>, where <code>&#955; = u + v&#964;</code>
    * and <code>u</code> and <code>u</code> are real numbers (elements of
    * <code><b>R</b></code>). 
    * @param mu The parameter <code>&#956;</code> of the elliptic curve.
    * @param u The real part of the element <code>&#955;</code> of
    * <code><b>R</b>[&#964;]</code>.
    * @param v The <code>&#964;</code>-adic part of the element
    * <code>&#955;</code> of <code><b>R</b>[&#964;]</code>.
    * @return The norm of <code>&#955;</code>.
    */
    public static SimpleBigDecimal Norm(sbyte mu, SimpleBigDecimal u, SimpleBigDecimal v)
    {
      SimpleBigDecimal norm;

      // s1 = u^2
      SimpleBigDecimal s1 = u.Multiply(u);

      // s2 = u * v
      SimpleBigDecimal s2 = u.Multiply(v);

      // s3 = 2 * v^2
      SimpleBigDecimal s3 = v.Multiply(v).ShiftLeft(1);

      if (mu == 1)
      {
        norm = s1.Add(s2).Add(s3);
      }
      else if (mu == -1)
      {
        norm = s1.Subtract(s2).Add(s3);
      }
      else
      {
        throw new ArgumentException("mu must be 1 or -1");
      }

      return norm;
    }

    /**
    * Rounds an element <code>&#955;</code> of <code><b>R</b>[&#964;]</code>
    * to an element of <code><b>Z</b>[&#964;]</code>, such that their difference
    * has minimal norm. <code>&#955;</code> is given as
    * <code>&#955; = &#955;<sub>0</sub> + &#955;<sub>1</sub>&#964;</code>.
    * @param lambda0 The component <code>&#955;<sub>0</sub></code>.
    * @param lambda1 The component <code>&#955;<sub>1</sub></code>.
    * @param mu The parameter <code>&#956;</code> of the elliptic curve. Must
    * equal 1 or -1.
    * @return The rounded element of <code><b>Z</b>[&#964;]</code>.
    * @throws ArgumentException if <code>lambda0</code> and
    * <code>lambda1</code> do not have same scale.
    */
    public static ZTauElement Round(SimpleBigDecimal lambda0,
      SimpleBigDecimal lambda1, sbyte mu)
    {
      int scale = lambda0.Scale;
      if (lambda1.Scale != scale)
        throw new ArgumentException("lambda0 and lambda1 do not have same scale");

      if (!((mu == 1) || (mu == -1)))
        throw new ArgumentException("mu must be 1 or -1");

      BigInteger f0 = lambda0.Round();
      BigInteger f1 = lambda1.Round();

      SimpleBigDecimal eta0 = lambda0.Subtract(f0);
      SimpleBigDecimal eta1 = lambda1.Subtract(f1);

      // eta = 2*eta0 + mu*eta1
      SimpleBigDecimal eta = eta0.Add(eta0);
      if (mu == 1)
      {
        eta = eta.Add(eta1);
      }
      else
      {
        // mu == -1
        eta = eta.Subtract(eta1);
      }

      // check1 = eta0 - 3*mu*eta1
      // check2 = eta0 + 4*mu*eta1
      SimpleBigDecimal threeEta1 = eta1.Add(eta1).Add(eta1);
      SimpleBigDecimal fourEta1 = threeEta1.Add(eta1);
      SimpleBigDecimal check1;
      SimpleBigDecimal check2;
      if (mu == 1)
      {
        check1 = eta0.Subtract(threeEta1);
        check2 = eta0.Add(fourEta1);
      }
      else
      {
        // mu == -1
        check1 = eta0.Add(threeEta1);
        check2 = eta0.Subtract(fourEta1);
      }

      sbyte h0 = 0;
      sbyte h1 = 0;

      // if eta >= 1
      if (eta.CompareTo(BigInteger.One) >= 0)
      {
        if (check1.CompareTo(MinusOne) < 0)
        {
          h1 = mu;
        }
        else
        {
          h0 = 1;
        }
      }
      else
      {
        // eta < 1
        if (check2.CompareTo(BigInteger.Two) >= 0)
        {
          h1 = mu;
        }
      }

      // if eta < -1
      if (eta.CompareTo(MinusOne) < 0)
      {
        if (check1.CompareTo(BigInteger.One) >= 0)
        {
          h1 = (sbyte)-mu;
        }
        else
        {
          h0 = -1;
        }
      }
      else
      {
        // eta >= -1
        if (check2.CompareTo(MinusTwo) < 0)
        {
          h1 = (sbyte)-mu;
        }
      }

      BigInteger q0 = f0.Add(BigInteger.ValueOf(h0));
      BigInteger q1 = f1.Add(BigInteger.ValueOf(h1));
      return new ZTauElement(q0, q1);
    }

    /**
    * Approximate division by <code>n</code>. For an integer
    * <code>k</code>, the value <code>&#955; = s k / n</code> is
    * computed to <code>c</code> bits of accuracy.
    * @param k The parameter <code>k</code>.
    * @param s The curve parameter <code>s<sub>0</sub></code> or
    * <code>s<sub>1</sub></code>.
    * @param vm The Lucas Sequence element <code>V<sub>m</sub></code>.
    * @param a The parameter <code>a</code> of the elliptic curve.
    * @param m The bit length of the finite field
    * <code><b>F</b><sub>m</sub></code>.
    * @param c The number of bits of accuracy, i.e. the scale of the returned
    * <code>SimpleBigDecimal</code>.
    * @return The value <code>&#955; = s k / n</code> computed to
    * <code>c</code> bits of accuracy.
    */
    public static SimpleBigDecimal ApproximateDivisionByN(BigInteger k,
      BigInteger s, BigInteger vm, sbyte a, int m, int c)
    {
      int _k = (m + 5)/2 + c;
      BigInteger ns = k.ShiftRight(m - _k - 2 + a);

      BigInteger gs = s.Multiply(ns);

      BigInteger hs = gs.ShiftRight(m);

      BigInteger js = vm.Multiply(hs);

      BigInteger gsPlusJs = gs.Add(js);
      BigInteger ls = gsPlusJs.ShiftRight(_k-c);
      if (gsPlusJs.TestBit(_k-c-1))
      {
        // round up
        ls = ls.Add(BigInteger.One);
      }

      return new SimpleBigDecimal(ls, c);
    }

    /**
    * Computes the <code>&#964;</code>-adic NAF (non-adjacent form) of an
    * element <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>.
    * @param mu The parameter <code>&#956;</code> of the elliptic curve.
    * @param lambda The element <code>&#955;</code> of
    * <code><b>Z</b>[&#964;]</code>.
    * @return The <code>&#964;</code>-adic NAF of <code>&#955;</code>.
    */
    public static sbyte[] TauAdicNaf(sbyte mu, ZTauElement lambda)
    {
      if (!((mu == 1) || (mu == -1))) 
        throw new ArgumentException("mu must be 1 or -1");

      BigInteger norm = Norm(mu, lambda);

      // Ceiling of log2 of the norm 
      int log2Norm = norm.BitLength;

      // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
      int maxLength = log2Norm > 30 ? log2Norm + 4 : 34;

      // The array holding the TNAF
      sbyte[] u = new sbyte[maxLength];
      int i = 0;

      // The actual length of the TNAF
      int length = 0;

      BigInteger r0 = lambda.u;
      BigInteger r1 = lambda.v;

      while(!((r0.Equals(BigInteger.Zero)) && (r1.Equals(BigInteger.Zero))))
      {
        // If r0 is odd
        if (r0.TestBit(0)) 
        {
          u[i] = (sbyte) BigInteger.Two.Subtract((r0.Subtract(r1.ShiftLeft(1))).Mod(Four)).IntValue;

          // r0 = r0 - u[i]
          if (u[i] == 1)
          {
            r0 = r0.ClearBit(0);
          }
          else
          {
            // u[i] == -1
            r0 = r0.Add(BigInteger.One);
          }
          length = i;
        }
        else
        {
          u[i] = 0;
        }

        BigInteger t = r0;
        BigInteger s = r0.ShiftRight(1);
        if (mu == 1) 
        {
          r0 = r1.Add(s);
        }
        else
        {
          // mu == -1
          r0 = r1.Subtract(s);
        }

        r1 = t.ShiftRight(1).Negate();
        i++;
      }

      length++;

      // Reduce the TNAF array to its actual length
      sbyte[] tnaf = new sbyte[length];
      Array.Copy(u, 0, tnaf, 0, length);
      return tnaf;
    }

    /**
    * Applies the operation <code>&#964;()</code> to an
    * <code>F2mPoint</code>. 
    * @param p The F2mPoint to which <code>&#964;()</code> is applied.
    * @return <code>&#964;(p)</code>
    */
    public static F2mPoint Tau(F2mPoint p)
    {
      if (p.IsInfinity)
        return p;

      ECFieldElement x = p.X;
      ECFieldElement y = p.Y;

      return new F2mPoint(p.Curve, x.Square(), y.Square(), p.IsCompressed);
    }

    /**
    * Returns the parameter <code>&#956;</code> of the elliptic curve.
    * @param curve The elliptic curve from which to obtain <code>&#956;</code>.
    * The curve must be a Koblitz curve, i.e. <code>a</code> Equals
    * <code>0</code> or <code>1</code> and <code>b</code> Equals
    * <code>1</code>. 
    * @return <code>&#956;</code> of the elliptic curve.
    * @throws ArgumentException if the given ECCurve is not a Koblitz
    * curve.
    */
    public static sbyte GetMu(F2mCurve curve)
    {
      BigInteger a = curve.A.ToBigInteger();

      sbyte mu;
      if (a.SignValue == 0)
      {
        mu = -1;
      }
      else if (a.Equals(BigInteger.One))
      {
        mu = 1;
      }
      else
      {
        throw new ArgumentException("No Koblitz curve (ABC), TNAF multiplication not possible");
      }
      return mu;
    }

    /**
    * Calculates the Lucas Sequence elements <code>U<sub>k-1</sub></code> and
    * <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code> and
    * <code>V<sub>k</sub></code>.
    * @param mu The parameter <code>&#956;</code> of the elliptic curve.
    * @param k The index of the second element of the Lucas Sequence to be
    * returned.
    * @param doV If set to true, computes <code>V<sub>k-1</sub></code> and
    * <code>V<sub>k</sub></code>, otherwise <code>U<sub>k-1</sub></code> and
    * <code>U<sub>k</sub></code>.
    * @return An array with 2 elements, containing <code>U<sub>k-1</sub></code>
    * and <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code>
    * and <code>V<sub>k</sub></code>.
    */
    public static BigInteger[] GetLucas(sbyte mu, int k, bool doV)
    {
      if (!(mu == 1 || mu == -1)) 
        throw new ArgumentException("mu must be 1 or -1");

      BigInteger u0;
      BigInteger u1;
      BigInteger u2;

      if (doV)
      {
        u0 = BigInteger.Two;
        u1 = BigInteger.ValueOf(mu);
      }
      else
      {
        u0 = BigInteger.Zero;
        u1 = BigInteger.One;
      }

      for (int i = 1; i < k; i++)
      {
        // u2 = mu*u1 - 2*u0;
        BigInteger s = null;
        if (mu == 1)
        {
          s = u1;
        }
        else
        {
          // mu == -1
          s = u1.Negate();
        }
              
        u2 = s.Subtract(u0.ShiftLeft(1));
        u0 = u1;
        u1 = u2;
        //            System.out.println(i + ": " + u2);
        //            System.out.println();
      }

      BigInteger[] retVal = {u0, u1};
      return retVal;
    }

    /**
    * Computes the auxiliary value <code>t<sub>w</sub></code>. If the width is
    * 4, then for <code>mu = 1</code>, <code>t<sub>w</sub> = 6</code> and for
    * <code>mu = -1</code>, <code>t<sub>w</sub> = 10</code> 
    * @param mu The parameter <code>&#956;</code> of the elliptic curve.
    * @param w The window width of the WTNAF.
    * @return the auxiliary value <code>t<sub>w</sub></code>
    */
    public static BigInteger GetTw(sbyte mu, int w) 
    {
      if (w == 4)
      {
        if (mu == 1)
        {
          return BigInteger.ValueOf(6);
        }
        else
        {
          // mu == -1
          return BigInteger.ValueOf(10);
        }
      }
      else
      {
        // For w <> 4, the values must be computed
        BigInteger[] us = GetLucas(mu, w, false);
        BigInteger twoToW = BigInteger.Zero.SetBit(w);
        BigInteger u1invert = us[1].ModInverse(twoToW);
        BigInteger tw;
        tw = BigInteger.Two.Multiply(us[0]).Multiply(u1invert).Mod(twoToW);
        //System.out.println("mu = " + mu);
        //System.out.println("tw = " + tw);
        return tw;
      }
    }

    /**
    * Computes the auxiliary values <code>s<sub>0</sub></code> and
    * <code>s<sub>1</sub></code> used for partial modular reduction. 
    * @param curve The elliptic curve for which to compute
    * <code>s<sub>0</sub></code> and <code>s<sub>1</sub></code>.
    * @throws ArgumentException if <code>curve</code> is not a
    * Koblitz curve (Anomalous Binary Curve, ABC).
    */
    public static BigInteger[] GetSi(F2mCurve curve)
    {
      if (!curve.IsKoblitz)
        throw new ArgumentException("si is defined for Koblitz curves only");

      int m = curve.M;
      int a = curve.A.ToBigInteger().IntValue;
      sbyte mu = curve.GetMu();
      int h = curve.H.IntValue;
      int index = m + 3 - a;
      BigInteger[] ui = GetLucas(mu, index, false);

      BigInteger dividend0;
      BigInteger dividend1;
      if (mu == 1)
      {
        dividend0 = BigInteger.One.Subtract(ui[1]);
        dividend1 = BigInteger.One.Subtract(ui[0]);
      }
      else if (mu == -1)
      {
        dividend0 = BigInteger.One.Add(ui[1]);
        dividend1 = BigInteger.One.Add(ui[0]);
      }
      else
      {
        throw new ArgumentException("mu must be 1 or -1");
      }

      BigInteger[] si = new BigInteger[2];

      if (h == 2)
      {
        si[0] = dividend0.ShiftRight(1);
        si[1] = dividend1.ShiftRight(1).Negate();
      }
      else if (h == 4)
      {
        si[0] = dividend0.ShiftRight(2);
        si[1] = dividend1.ShiftRight(2).Negate();
      }
      else
      {
        throw new ArgumentException("h (Cofactor) must be 2 or 4");
      }

      return si;
    }

    /**
    * Partial modular reduction modulo
    * <code>(&#964;<sup>m</sup> - 1)/(&#964; - 1)</code>.
    * @param k The integer to be reduced.
    * @param m The bitlength of the underlying finite field.
    * @param a The parameter <code>a</code> of the elliptic curve.
    * @param s The auxiliary values <code>s<sub>0</sub></code> and
    * <code>s<sub>1</sub></code>.
    * @param mu The parameter &#956; of the elliptic curve.
    * @param c The precision (number of bits of accuracy) of the partial
    * modular reduction.
    * @return <code>&#961; := k partmod (&#964;<sup>m</sup> - 1)/(&#964; - 1)</code>
    */
    public static ZTauElement PartModReduction(BigInteger k, int m, sbyte a,
      BigInteger[] s, sbyte mu, sbyte c)
    {
      // d0 = s[0] + mu*s[1]; mu is either 1 or -1
      BigInteger d0;
      if (mu == 1)
      {
        d0 = s[0].Add(s[1]);
      }
      else
      {
        d0 = s[0].Subtract(s[1]);
      }

      BigInteger[] v = GetLucas(mu, m, true);
      BigInteger vm = v[1];

      SimpleBigDecimal lambda0 = ApproximateDivisionByN(
        k, s[0], vm, a, m, c);
          
      SimpleBigDecimal lambda1 = ApproximateDivisionByN(
        k, s[1], vm, a, m, c);

      ZTauElement q = Round(lambda0, lambda1, mu);

      // r0 = n - d0*q0 - 2*s1*q1
      BigInteger r0 = k.Subtract(d0.Multiply(q.u)).Subtract(
        BigInteger.ValueOf(2).Multiply(s[1]).Multiply(q.v));

      // r1 = s1*q0 - s0*q1
      BigInteger r1 = s[1].Multiply(q.u).Subtract(s[0].Multiply(q.v));
          
      return new ZTauElement(r0, r1);
    }

    /**
    * Multiplies a {@link org.bouncycastle.math.ec.F2mPoint F2mPoint}
    * by a <code>BigInteger</code> using the reduced <code>&#964;</code>-adic
    * NAF (RTNAF) method.
    * @param p The F2mPoint to Multiply.
    * @param k The <code>BigInteger</code> by which to Multiply <code>p</code>.
    * @return <code>k * p</code>
    */
    public static F2mPoint MultiplyRTnaf(F2mPoint p, BigInteger k)
    {
      F2mCurve curve = (F2mCurve) p.Curve;
      int m = curve.M;
      sbyte a = (sbyte) curve.A.ToBigInteger().IntValue;
      sbyte mu = curve.GetMu();
      BigInteger[] s = curve.GetSi();
      ZTauElement rho = PartModReduction(k, m, a, s, mu, (sbyte)10);

      return MultiplyTnaf(p, rho);
    }

    /**
    * Multiplies a {@link org.bouncycastle.math.ec.F2mPoint F2mPoint}
    * by an element <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>
    * using the <code>&#964;</code>-adic NAF (TNAF) method.
    * @param p The F2mPoint to Multiply.
    * @param lambda The element <code>&#955;</code> of
    * <code><b>Z</b>[&#964;]</code>.
    * @return <code>&#955; * p</code>
    */
    public static F2mPoint MultiplyTnaf(F2mPoint p, ZTauElement lambda)
    {
      F2mCurve curve = (F2mCurve)p.Curve;
      sbyte mu = curve.GetMu();
      sbyte[] u = TauAdicNaf(mu, lambda);

      F2mPoint q = MultiplyFromTnaf(p, u);

      return q;
    }

    /**
    * Multiplies a {@link org.bouncycastle.math.ec.F2mPoint F2mPoint}
    * by an element <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>
    * using the <code>&#964;</code>-adic NAF (TNAF) method, given the TNAF
    * of <code>&#955;</code>.
    * @param p The F2mPoint to Multiply.
    * @param u The the TNAF of <code>&#955;</code>..
    * @return <code>&#955; * p</code>
    */
    public static F2mPoint MultiplyFromTnaf(F2mPoint p, sbyte[] u)
    {
      F2mCurve curve = (F2mCurve)p.Curve;
      F2mPoint q = (F2mPoint) curve.Infinity;
      for (int i = u.Length - 1; i >= 0; i--)
      {
        q = Tau(q);
        if (u[i] == 1)
        {
          q = (F2mPoint)q.AddSimple(p);
        }
        else if (u[i] == -1)
        {
          q = (F2mPoint)q.SubtractSimple(p);
        }
      }
      return q;
    }

    /**
    * Computes the <code>[&#964;]</code>-adic window NAF of an element
    * <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>.
    * @param mu The parameter &#956; of the elliptic curve.
    * @param lambda The element <code>&#955;</code> of
    * <code><b>Z</b>[&#964;]</code> of which to compute the
    * <code>[&#964;]</code>-adic NAF.
    * @param width The window width of the resulting WNAF.
    * @param pow2w 2<sup>width</sup>.
    * @param tw The auxiliary value <code>t<sub>w</sub></code>.
    * @param alpha The <code>&#945;<sub>u</sub></code>'s for the window width.
    * @return The <code>[&#964;]</code>-adic window NAF of
    * <code>&#955;</code>.
    */
    public static sbyte[] TauAdicWNaf(sbyte mu, ZTauElement lambda,
      sbyte width, BigInteger pow2w, BigInteger tw, ZTauElement[] alpha)
    {
      if (!((mu == 1) || (mu == -1))) 
        throw new ArgumentException("mu must be 1 or -1");

      BigInteger norm = Norm(mu, lambda);

      // Ceiling of log2 of the norm 
      int log2Norm = norm.BitLength;

      // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
      int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;

      // The array holding the TNAF
      sbyte[] u = new sbyte[maxLength];

      // 2^(width - 1)
      BigInteger pow2wMin1 = pow2w.ShiftRight(1);

      // Split lambda into two BigIntegers to simplify calculations
      BigInteger r0 = lambda.u;
      BigInteger r1 = lambda.v;
      int i = 0;

      // while lambda <> (0, 0)
      while (!((r0.Equals(BigInteger.Zero))&&(r1.Equals(BigInteger.Zero))))
      {
        // if r0 is odd
        if (r0.TestBit(0)) 
        {
          // uUnMod = r0 + r1*tw Mod 2^width
          BigInteger uUnMod
            = r0.Add(r1.Multiply(tw)).Mod(pow2w);
                  
          sbyte uLocal;
          // if uUnMod >= 2^(width - 1)
          if (uUnMod.CompareTo(pow2wMin1) >= 0)
          {
            uLocal = (sbyte) uUnMod.Subtract(pow2w).IntValue;
          }
          else
          {
            uLocal = (sbyte) uUnMod.IntValue;
          }
          // uLocal is now in [-2^(width-1), 2^(width-1)-1]

          u[i] = uLocal;
          bool s = true;
          if (uLocal < 0) 
          {
            s = false;
            uLocal = (sbyte)-uLocal;
          }
          // uLocal is now >= 0

          if (s) 
          {
            r0 = r0.Subtract(alpha[uLocal].u);
            r1 = r1.Subtract(alpha[uLocal].v);
          }
          else
          {
            r0 = r0.Add(alpha[uLocal].u);
            r1 = r1.Add(alpha[uLocal].v);
          }
        }
        else
        {
          u[i] = 0;
        }

        BigInteger t = r0;

        if (mu == 1)
        {
          r0 = r1.Add(r0.ShiftRight(1));
        }
        else
        {
          // mu == -1
          r0 = r1.Subtract(r0.ShiftRight(1));
        }
        r1 = t.ShiftRight(1).Negate();
        i++;
      }
      return u;
    }

    /**
    * Does the precomputation for WTNAF multiplication.
    * @param p The <code>ECPoint</code> for which to do the precomputation.
    * @param a The parameter <code>a</code> of the elliptic curve.
    * @return The precomputation array for <code>p</code>. 
    */
    public static F2mPoint[] GetPreComp(F2mPoint p, sbyte a)
    {
      F2mPoint[] pu;
      pu = new F2mPoint[16];
      pu[1] = p;
      sbyte[][] alphaTnaf;
      if (a == 0)
      {
        alphaTnaf = Tnaf.Alpha0Tnaf;
      }
      else
      {
        // a == 1
        alphaTnaf = Tnaf.Alpha1Tnaf;
      }

      int precompLen = alphaTnaf.Length;
      for (int i = 3; i < precompLen; i = i + 2)
      {
        pu[i] = Tnaf.MultiplyFromTnaf(p, alphaTnaf[i]);
      }
          
      return pu;
    }
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.