ControlFlowInstructions.cs :  » Script » IronPython » Microsoft » Scripting » Interpreter » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Script » IronPython 
IronPython » Microsoft » Scripting » Interpreter » ControlFlowInstructions.cs
/* ****************************************************************************
 *
 * Copyright (c) Microsoft Corporation. 
 *
 * This source code is subject to terms and conditions of the Microsoft Public License. A 
 * copy of the license can be found in the License.html file at the root of this distribution. If 
 * you cannot locate the  Microsoft Public License, please send an email to 
 * dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound 
 * by the terms of the Microsoft Public License.
 *
 * You must not remove this notice, or any other, from this software.
 *
 *
 * ***************************************************************************/

#if !CLR2
using System.Linq.Expressions;
#endif

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Threading;
using Microsoft.Scripting.Ast;
using Microsoft.Scripting.Utils;

namespace Microsoft.Scripting.Interpreter{
    using LoopFunc = Func<object[], StrongBox<object>[], InterpretedFrame, int>;

    internal abstract class OffsetInstruction : Instruction {
        internal const int Unknown = Int32.MinValue;
        internal const int CacheSize = 32;

        // the offset to jump to (relative to this instruction):
        protected int _offset = Unknown;

        public int Offset { get { return _offset; } }
        public abstract Instruction[] Cache { get; }

        public virtual Instruction Fixup(int offset, int targetContinuationDepth, int targetStackDepth) {
            Debug.Assert(_offset == Unknown && offset != Unknown);
            _offset = offset;

            var cache = Cache;
            if (cache != null && offset >= 0 && offset < cache.Length) {
                return cache[offset] ?? (cache[offset] = this);
            }

            return this;
        }

        public override string ToDebugString(int instructionIndex, object cookie, Func<int, int> labelIndexer, IList<object> objects) {
            return ToString() + (_offset != Unknown ? " -> " + (instructionIndex + _offset).ToString() : "");
        }

        public override string ToString() {
            return InstructionName + (_offset == Unknown ? "(?)" : "(" + _offset + ")");
        }
    }

    internal sealed class BranchFalseInstruction : OffsetInstruction {
        private static Instruction[] _cache;

        public override Instruction[] Cache {
            get {
                if (_cache == null) {
                    _cache = new Instruction[CacheSize];
                }
                return _cache;
            }
        }

        internal BranchFalseInstruction() {
        }

        public override int ConsumedStack { get { return 1; } }

        public override int Run(InterpretedFrame frame) {
            Debug.Assert(_offset != Unknown);

            if (!(bool)frame.Pop()) {
                return _offset;
            }

            return +1;
        }
    }

    internal sealed class BranchTrueInstruction : OffsetInstruction {
        private static Instruction[] _cache;

        public override Instruction[] Cache {
            get {
                if (_cache == null) {
                    _cache = new Instruction[CacheSize];
                }
                return _cache;
            }
        }

        internal BranchTrueInstruction() {
        }

        public override int ConsumedStack { get { return 1; } }

        public override int Run(InterpretedFrame frame) {
            Debug.Assert(_offset != Unknown);

            if ((bool)frame.Pop()) {
                return _offset;
            }

            return +1;
        }
    }

    internal sealed class CoalescingBranchInstruction : OffsetInstruction {
        private static Instruction[] _cache;

        public override Instruction[] Cache {
            get {
                if (_cache == null) {
                    _cache = new Instruction[CacheSize];
                }
                return _cache;
            }
        }

        internal CoalescingBranchInstruction() {
        }

        public override int ConsumedStack { get { return 1; } }
        public override int ProducedStack { get { return 1; } }

        public override int Run(InterpretedFrame frame) {
            Debug.Assert(_offset != Unknown);

            if (frame.Peek() != null) {
                return _offset;
            }

            return +1;
        }
    }

    internal class BranchInstruction : OffsetInstruction {
        private static Instruction[][][] _caches;

        public override Instruction[] Cache {
            get {
                if (_caches == null) {
                    _caches = new Instruction[2][][] { new Instruction[2][], new Instruction[2][] };
                }
                return _caches[ConsumedStack][ProducedStack] ?? (_caches[ConsumedStack][ProducedStack] = new Instruction[CacheSize]);
            }
        }

        internal readonly bool _hasResult;
        internal readonly bool _hasValue;

        internal BranchInstruction()
            : this(false, false) {
        }

        public BranchInstruction(bool hasResult, bool hasValue) {
            _hasResult = hasResult;
            _hasValue = hasValue;
        }

        public override int ConsumedStack {
            get { return _hasValue ? 1 : 0; }
        }

        public override int ProducedStack {
            get { return _hasResult ? 1 : 0; }
        }

        public override int Run(InterpretedFrame frame) {
            Debug.Assert(_offset != Unknown);

            return _offset;
        }
    }

    internal abstract class IndexedBranchInstruction : Instruction {
        protected const int CacheSize = 32;

        internal readonly int _labelIndex;

        public IndexedBranchInstruction(int labelIndex) {
            _labelIndex = labelIndex;
        }

        public RuntimeLabel GetLabel(InterpretedFrame frame) {
            return frame.Interpreter._labels[_labelIndex];
        }

        public override string ToDebugString(int instructionIndex, object cookie, Func<int, int> labelIndexer, IList<object> objects) {
            int targetIndex = labelIndexer(_labelIndex);
            return ToString() + (targetIndex != BranchLabel.UnknownIndex ? " -> " + targetIndex.ToString() : "");
        }

        public override string ToString() {
            return InstructionName + "[" + _labelIndex + "]";
        }
    }

    /// <summary>
    /// This instruction implements a goto expression that can jump out of any expression. 
    /// It pops values (arguments) from the evaluation stack that the expression tree nodes in between 
    /// the goto expression and the target label node pushed and not consumed yet. 
    /// A goto expression can jump into a node that evaluates arguments only if it carries 
    /// a value and jumps right after the first argument (the carried value will be used as the first argument). 
    /// Goto can jump into an arbitrary child of a BlockExpression since the block doesnt accumulate values 
    /// on evaluation stack as its child expressions are being evaluated.
    /// 
    /// Goto needs to execute any finally blocks on the way to the target label.
    /// <example>
    /// { 
    ///     f(1, 2, try { g(3, 4, try { goto L } finally { ... }, 6) } finally { ... }, 7, 8)
    ///     L: ... 
    /// }
    /// </example>
    /// The goto expression here jumps to label L while having 4 items on evaluation stack (1, 2, 3 and 4). 
    /// The jump needs to execute both finally blocks, the first one on stack level 4 the 
    /// second one on stack level 2. So, it needs to jump the first finally block, pop 2 items from the stack, 
    /// run second finally block and pop another 2 items from the stack and set instruction pointer to label L.
    /// 
    /// Goto also needs to rethrow ThreadAbortException iff it jumps out of a catch handler and 
    /// the current thread is in "abort requested" state.
    /// </summary>
    internal sealed class GotoInstruction : IndexedBranchInstruction {
        private const int Variants = 4;
        private static readonly GotoInstruction[] Cache = new GotoInstruction[Variants * CacheSize];

        private readonly bool _hasResult;

        // TODO: We can remember hasValue in label and look it up when calculating stack balance. That would save some cache.
        private readonly bool _hasValue;

        // The values should technically be Consumed = 1, Produced = 1 for gotos that target a label whose continuation depth 
        // is different from the current continuation depth. However, in case of forward gotos, we don't not know that is the 
        // case until the label is emitted. By then the consumed and produced stack information is useless.
        // The important thing here is that the stack balance is 0.
        public override int ConsumedContinuations { get { return 0; } }
        public override int ProducedContinuations { get { return 0; } }

        public override int ConsumedStack {
            get { return _hasValue ? 1 : 0; }
        }

        public override int ProducedStack {
            get { return _hasResult ? 1 : 0; }
        }

        private GotoInstruction(int targetIndex, bool hasResult, bool hasValue)
            : base(targetIndex) {
            _hasResult = hasResult;
            _hasValue = hasValue;
        }

        internal static GotoInstruction Create(int labelIndex, bool hasResult, bool hasValue) {
            if (labelIndex < CacheSize) {
                var index = Variants * labelIndex | (hasResult ? 2 : 0) | (hasValue ? 1 : 0);
                return Cache[index] ?? (Cache[index] = new GotoInstruction(labelIndex, hasResult, hasValue));
            }
            return new GotoInstruction(labelIndex, hasResult, hasValue);
        }

        public override int Run(InterpretedFrame frame) {
            // Are we jumping out of catch/finally while aborting the current thread?
            Interpreter.AbortThreadIfRequested(frame, _labelIndex);

            // goto the target label or the current finally continuation:
            return frame.Goto(_labelIndex, _hasValue ? frame.Pop() : Interpreter.NoValue);
        }
    }

    internal sealed class EnterTryFinallyInstruction : IndexedBranchInstruction {
        private readonly static EnterTryFinallyInstruction[] Cache = new EnterTryFinallyInstruction[CacheSize];

        public override int ProducedContinuations { get { return 1; } }

        private EnterTryFinallyInstruction(int targetIndex)
            : base(targetIndex) {
        }

        internal static EnterTryFinallyInstruction Create(int labelIndex) {
            if (labelIndex < CacheSize) {
                return Cache[labelIndex] ?? (Cache[labelIndex] = new EnterTryFinallyInstruction(labelIndex));
            }
            return new EnterTryFinallyInstruction(labelIndex);
        }

        public override int Run(InterpretedFrame frame) {
            // Push finally. 
            frame.PushContinuation(_labelIndex);
            return 1;
        }
    }

    /// <summary>
    /// The first instruction of finally block.
    /// </summary>
    internal sealed class EnterFinallyInstruction : Instruction {
        internal static readonly Instruction Instance = new EnterFinallyInstruction();

        public override int ProducedStack { get { return 2; } }
        public override int ConsumedContinuations { get { return 1; } }

        private EnterFinallyInstruction() {
        }

        public override int Run(InterpretedFrame frame) {
            frame.PushPendingContinuation();
            frame.RemoveContinuation();
            return 1;
        }
    }

    /// <summary>
    /// The last instruction of finally block.
    /// </summary>
    internal sealed class LeaveFinallyInstruction : Instruction {
        internal static readonly Instruction Instance = new LeaveFinallyInstruction();

        public override int ConsumedStack { get { return 2; } }
        
        private LeaveFinallyInstruction() {
        }

        public override int Run(InterpretedFrame frame) {
            frame.PopPendingContinuation();

            // jump to goto target or to the next finally:
            return frame.YieldToPendingContinuation();
        }
    }

    // no-op: we need this just to balance the stack depth.
    internal sealed class EnterExceptionHandlerInstruction : Instruction {
        internal static readonly EnterExceptionHandlerInstruction Void = new EnterExceptionHandlerInstruction(false);
        internal static readonly EnterExceptionHandlerInstruction NonVoid = new EnterExceptionHandlerInstruction(true);

        // True if try-expression is non-void.
        private readonly bool _hasValue;

        private EnterExceptionHandlerInstruction(bool hasValue) {
            _hasValue = hasValue;
        }

        // If an exception is throws in try-body the expression result of try-body is not evaluated and loaded to the stack. 
        // So the stack doesn't contain the try-body's value when we start executing the handler.
        // However, while emitting instructions try block falls thru the catch block with a value on stack. 
        // We need to declare it consumed so that the stack state upon entry to the handler corresponds to the real 
        // stack depth after throw jumped to this catch block.
        public override int ConsumedStack { get { return _hasValue ? 1 : 0; } }

        // A variable storing the current exception is pushed to the stack by exception handling.
        // Catch handlers: The value is immediately popped and stored into a local.
        // Fault handlers: The value is kept on stack during fault handler evaluation.
        public override int ProducedStack { get { return 1; } }

        public override int Run(InterpretedFrame frame) {
            // nop (the exception value is pushed by the interpreter in HandleCatch)
            return 1;
        }
    }

    /// <summary>
    /// The last instruction of a catch exception handler.
    /// </summary>
    internal sealed class LeaveExceptionHandlerInstruction : IndexedBranchInstruction {
        private static LeaveExceptionHandlerInstruction[] Cache = new LeaveExceptionHandlerInstruction[2 * CacheSize];

        private readonly bool _hasValue;

        // The catch block yields a value if the body is non-void. This value is left on the stack. 
        public override int ConsumedStack {
            get { return _hasValue ? 1 : 0; }
        }

        public override int ProducedStack {
            get { return _hasValue ? 1 : 0; }
        }

        private LeaveExceptionHandlerInstruction(int labelIndex, bool hasValue)
            : base(labelIndex) {
            _hasValue = hasValue;
        }

        internal static LeaveExceptionHandlerInstruction Create(int labelIndex, bool hasValue) {
            if (labelIndex < CacheSize) {
                int index = (2 * labelIndex) | (hasValue ? 1 : 0);
                return Cache[index] ?? (Cache[index] = new LeaveExceptionHandlerInstruction(labelIndex, hasValue));
            }
            return new LeaveExceptionHandlerInstruction(labelIndex, hasValue);
        }

        public override int Run(InterpretedFrame frame) {
            // CLR rethrows ThreadAbortException when leaving catch handler if abort is requested on the current thread.
            Interpreter.AbortThreadIfRequested(frame, _labelIndex);
            return GetLabel(frame).Index - frame.InstructionIndex;
        }
    }

    /// <summary>
    /// The last instruction of a fault exception handler.
    /// </summary>
    internal sealed class LeaveFaultInstruction : Instruction {
        internal static readonly Instruction NonVoid = new LeaveFaultInstruction(true);
        internal static readonly Instruction Void = new LeaveFaultInstruction(false);

        private readonly bool _hasValue;

        // The fault block has a value if the body is non-void, but the value is never used.
        // We compile the body of a fault block as void.
        // However, we keep the exception object that was pushed upon entering the fault block on the stack during execution of the block
        // and pop it at the end.
        public override int ConsumedStack {
            get { return 1; }
        }

        // While emitting instructions a non-void try-fault expression is expected to produce a value. 
        public override int ProducedStack {
            get { return _hasValue ? 1 : 0; }
        }

        private LeaveFaultInstruction(bool hasValue) {
            _hasValue = hasValue;
        }

        public override int Run(InterpretedFrame frame) {
            // TODO: ThreadAbortException ?

            object exception = frame.Pop();
            ExceptionHandler handler;
            return frame.Interpreter.GotoHandler(frame, exception, out handler);
        }
    }


    internal sealed class ThrowInstruction : Instruction {
        internal static readonly ThrowInstruction Throw = new ThrowInstruction(true);
        internal static readonly ThrowInstruction VoidThrow = new ThrowInstruction(false);

        private readonly bool _hasResult;

        private ThrowInstruction(bool hasResult) {
            _hasResult = hasResult;
        }

        public override int ProducedStack {
            get { return _hasResult ? 1 : 0; }
        }

        public override int ConsumedStack {
            get { return 1; }
        }

        public override int Run(InterpretedFrame frame) {
            throw (Exception)frame.Pop();
        }
    }

    internal sealed class SwitchInstruction : Instruction {
        private readonly Dictionary<int, int> _cases;

        internal SwitchInstruction(Dictionary<int, int> cases) {
            Assert.NotNull(cases);
            _cases = cases;
        }

        public override int ConsumedStack { get { return 1; } }
        public override int ProducedStack { get { return 0; } }

        public override int Run(InterpretedFrame frame) {
            int target;
            return _cases.TryGetValue((int)frame.Pop(), out target) ? target : 1;
        }
    }

    internal sealed class EnterLoopInstruction : Instruction {
        private readonly int _instructionIndex;
        private LoopExpression _loop;
        private int _loopEnd;
        private int _compilationThreshold;

        internal EnterLoopInstruction(LoopExpression loop, int compilationThreshold, int instructionIndex) {
            _loop = loop;
            _compilationThreshold = compilationThreshold;
            _instructionIndex = instructionIndex;
        }

        internal void FinishLoop(int loopEnd) {
            _loopEnd = loopEnd;
        }

        public override int Run(InterpretedFrame frame) {
            // Don't lock here, it's a frequently hit path.
            //
            // There could be multiple threads racing, but that is okay.
            // Two bad things can happen:
            //   * We miss decrements (some thread sets the counter forward)
            //   * We might enter the "if" branch more than once.
            //
            // The first is okay, it just means we take longer to compile.
            // The second we explicitly guard against inside of Compile().
            // 
            // We can't miss 0. The first thread that writes -1 must have read 0 and hence start compilation.
            if (unchecked(_compilationThreshold--) == 0) {
                if (frame.Interpreter.CompileSynchronously) {
                    Compile(frame);
                } else {
                    // Kick off the compile on another thread so this one can keep going
                    ThreadPool.QueueUserWorkItem(Compile, frame);
                }
            }
            return 1;
        }

        private bool Compiled {
            get { return _loop == null; }
        }

        private void Compile(object frameObj) {
            if (Compiled) {
                return;
            }

            lock (this) {
                if (Compiled) {
                    return;
                }

                PerfTrack.NoteEvent(PerfTrack.Categories.Compiler, "Interpreted loop compiled");

                InterpretedFrame frame = (InterpretedFrame)frameObj;
                var compiler = new LoopCompiler(_loop, frame.Interpreter.LabelMapping, frame.Interpreter.Locals, _instructionIndex, _loopEnd);
                var instructions = frame.Interpreter.Instructions.Instructions;

                // replace this instruction with an optimized one:
                instructions[_instructionIndex] = new CompiledLoopInstruction(compiler.CreateDelegate());

                // invalidate this instruction, some threads may still hold on it:
                _loop = null;
            }
        }
    }

    internal sealed class CompiledLoopInstruction : Instruction {
        private readonly LoopFunc _compiledLoop;

        public CompiledLoopInstruction(LoopFunc compiledLoop) {
            Assert.NotNull(compiledLoop);
            _compiledLoop = compiledLoop;
        }

        public override int Run(InterpretedFrame frame) {
            return _compiledLoop(frame.Data, frame.Closure, frame);
        }
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.