LambdaCompiler.Statements.cs :  » Script » IronRuby » Microsoft » Scripting » Ast » Compiler » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Script » IronRuby 
IronRuby » Microsoft » Scripting » Ast » Compiler » LambdaCompiler.Statements.cs
/* ****************************************************************************
 *
 * Copyright (c) Microsoft Corporation. 
 *
 * This source code is subject to terms and conditions of the Microsoft Public License. A 
 * copy of the license can be found in the License.html file at the root of this distribution. If 
 * you cannot locate the  Microsoft Public License, please send an email to 
 * dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound 
 * by the terms of the Microsoft Public License.
 *
 * You must not remove this notice, or any other, from this software.
 *
 *
 * ***************************************************************************/

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Dynamic.Utils;
using System.Reflection;
using System.Reflection.Emit;
using System.Globalization;

#if SILVERLIGHT
using System.Core;
#endif

#if CLR2
namespace Microsoft.Scripting.Ast.Compiler{
#else
namespace System.Linq.Expressions.Compiler {
#endif
    partial class LambdaCompiler {
        private void EmitBlockExpression(Expression expr, CompilationFlags flags) {
            // emit body
            Emit((BlockExpression)expr, UpdateEmitAsTypeFlag(flags, CompilationFlags.EmitAsDefaultType));
        }

        private void Emit(BlockExpression node, CompilationFlags flags) {
            EnterScope(node);

            CompilationFlags emitAs = flags & CompilationFlags.EmitAsTypeMask;

            int count = node.ExpressionCount;
            CompilationFlags tailCall = flags & CompilationFlags.EmitAsTailCallMask;
            CompilationFlags middleTailCall = tailCall == CompilationFlags.EmitAsNoTail ? CompilationFlags.EmitAsNoTail : CompilationFlags.EmitAsMiddle;

            for (int index = 0; index < count - 1; index++) {
                var e = node.GetExpression(index);
                var next = node.GetExpression(index + 1);

                if (EmitDebugSymbols) {
                    // No need to emit a clearance if the next expression in the block is also a
                    // DebugInfoExprssion.
                    var debugInfo = e as DebugInfoExpression;
                    if (debugInfo != null && debugInfo.IsClear && next is DebugInfoExpression) {
                        continue;
                    }
                }
                // In the middle of the block.
                // We may do better here by marking it as Tail if the following expressions are not going to emit any IL.
                var tailCallFlag = middleTailCall;

                var g = next as GotoExpression;
                if (g != null && (g.Value == null || !Significant(g.Value))) {
                    var labelInfo = ReferenceLabel(g.Target);
                    if (labelInfo.CanReturn) {
                        // Since tail call flags are not passed into EmitTryExpression, CanReturn means the goto will be emitted
                        // as Ret. Therefore we can emit the current expression with tail call.
                        tailCallFlag = CompilationFlags.EmitAsTail;
                    }
                }
                flags = UpdateEmitAsTailCallFlag(flags, tailCallFlag);
                EmitExpressionAsVoid(e, flags);
            }

            // if the type of Block it means this is not a Comma
            // so we will force the last expression to emit as void.
            // We don't need EmitAsType flag anymore, should only pass
            // the EmitTailCall field in flags to emitting the last expression.
            if (emitAs == CompilationFlags.EmitAsVoidType || node.Type == typeof(void)) {
                EmitExpressionAsVoid(node.GetExpression(count - 1), tailCall);
            } else {
                EmitExpressionAsType(node.GetExpression(count - 1), node.Type, tailCall);
            }

            ExitScope(node);
        }

        private void EnterScope(object node) {
            if (HasVariables(node) &&
                (_scope.MergedScopes == null || !_scope.MergedScopes.Contains(node))) {

                CompilerScope scope;
                if (!_tree.Scopes.TryGetValue(node, out scope)) {
                    //
                    // Very often, we want to compile nodes as reductions
                    // rather than as IL, but usually they need to allocate
                    // some IL locals. To support this, we allow emitting a
                    // BlockExpression that was not bound by VariableBinder.
                    // This works as long as the variables are only used
                    // locally -- i.e. not closed over.
                    //
                    // User-created blocks will never hit this case; only our
                    // internally reduced nodes will.
                    //
                    scope = new CompilerScope(node, false) { NeedsClosure = _scope.NeedsClosure };
                }

                _scope = scope.Enter(this, _scope);
                Debug.Assert(_scope.Node == node);
            }
        }

        private static bool HasVariables(object node) {
            var block = node as BlockExpression;
            if (block != null) {
                return block.Variables.Count > 0;
            }
            return ((CatchBlock)node).Variable != null;
        }

        private void ExitScope(object node) {
            if (_scope.Node == node) {
                _scope = _scope.Exit();
            }
        }

        private void EmitDefaultExpression(Expression expr) {
            var node = (DefaultExpression)expr;
            if (node.Type != typeof(void)) {
                // emit default(T)
                _ilg.EmitDefault(node.Type);
            }
        }

        private void EmitLoopExpression(Expression expr) {
            LoopExpression node = (LoopExpression)expr;

            PushLabelBlock(LabelScopeKind.Statement);
            LabelInfo breakTarget = DefineLabel(node.BreakLabel);
            LabelInfo continueTarget = DefineLabel(node.ContinueLabel);

            continueTarget.MarkWithEmptyStack();

            EmitExpressionAsVoid(node.Body);

            _ilg.Emit(OpCodes.Br, continueTarget.Label);

            PopLabelBlock(LabelScopeKind.Statement);

            breakTarget.MarkWithEmptyStack();
        }

        #region SwitchExpression

        private void EmitSwitchExpression(Expression expr, CompilationFlags flags) {
            SwitchExpression node = (SwitchExpression)expr;

            // Try to emit it as an IL switch. Works for integer types.
            if (TryEmitSwitchInstruction(node, flags)) {
                return;
            }

            // Try to emit as a hashtable lookup. Works for strings.
            if (TryEmitHashtableSwitch(node, flags)) {
                return;
            }

            //
            // Fall back to a series of tests. We need to IL gen instead of
            // transform the tree to avoid stack overflow on a big switch.
            //

            var switchValue = Expression.Parameter(node.SwitchValue.Type, "switchValue");
            var testValue = Expression.Parameter(GetTestValueType(node), "testValue");
            _scope.AddLocal(this, switchValue);
            _scope.AddLocal(this, testValue);

            EmitExpression(node.SwitchValue);
            _scope.EmitSet(switchValue);

            // Emit tests
            var labels = new Label[node.Cases.Count];
            var isGoto = new bool[node.Cases.Count];
            for (int i = 0, n = node.Cases.Count; i < n; i++) {
                DefineSwitchCaseLabel(node.Cases[i], out labels[i], out isGoto[i]);
                foreach (Expression test in node.Cases[i].TestValues) {
                    // Pull the test out into a temp so it runs on the same
                    // stack as the switch. This simplifies spilling.
                    EmitExpression(test);
                    _scope.EmitSet(testValue);
                    Debug.Assert(TypeUtils.AreReferenceAssignable(testValue.Type, test.Type));
                    EmitExpressionAndBranch(true, Expression.Equal(switchValue, testValue, false, node.Comparison), labels[i]);
                }
            }

            // Define labels
            Label end = _ilg.DefineLabel();
            Label @default = (node.DefaultBody == null) ? end : _ilg.DefineLabel();

            // Emit the case and default bodies
            EmitSwitchCases(node, labels, isGoto, @default, end, flags);
        }

        /// <summary>
        /// Gets the common test test value type of the SwitchExpression.
        /// </summary>
        private static Type GetTestValueType(SwitchExpression node) {
            if (node.Comparison == null) {
                // If we have no comparison, all right side types must be the
                // same.
                return node.Cases[0].TestValues[0].Type;
            }

            // Otherwise, get the type from the method.
            Type result = node.Comparison.GetParametersCached()[1].ParameterType.GetNonRefType();
            if (node.IsLifted) {
                result = TypeUtils.GetNullableType(result);
            }
            return result;
        }

        private sealed class SwitchLabel {
            internal readonly decimal Key;
            internal readonly Label Label;

            // Boxed version of Key, preseving the original type.
            internal readonly object Constant;

            internal SwitchLabel(decimal key, object @constant, Label label) {
                Key = key;
                Constant = @constant;
                Label = label;
            }
        }

        private sealed class SwitchInfo {
            internal readonly SwitchExpression Node;
            internal readonly LocalBuilder Value;
            internal readonly Label Default;
            internal readonly Type Type;
            internal readonly bool IsUnsigned;
            internal readonly bool Is64BitSwitch;

            internal SwitchInfo(SwitchExpression node, LocalBuilder value, Label @default) {
                Node = node;
                Value = value;
                Default = @default;
                Type = Node.SwitchValue.Type;
                IsUnsigned = TypeUtils.IsUnsigned(Type);
                var code = Type.GetTypeCode(Type);
                Is64BitSwitch = code == TypeCode.UInt64 || code == TypeCode.Int64;
            }
        }

        private static bool FitsInBucket(List<SwitchLabel> buckets, decimal key, int count) {
            Debug.Assert(key > buckets[buckets.Count - 1].Key);
            decimal jumpTableSlots = key - buckets[0].Key + 1;
            if (jumpTableSlots > int.MaxValue) {
                return false;
            }
            // density must be > 50%
            return (buckets.Count + count) * 2 > jumpTableSlots;
        }

        private static void MergeBuckets(List<List<SwitchLabel>> buckets) {
            while (buckets.Count > 1) {
                List<SwitchLabel> first = buckets[buckets.Count - 2];
                List<SwitchLabel> second = buckets[buckets.Count - 1];

                if (!FitsInBucket(first, second[second.Count - 1].Key, second.Count)) {
                    return;
                }

                // Merge them
                first.AddRange(second);
                buckets.RemoveAt(buckets.Count - 1);
            }
        }

        // Add key to a new or existing bucket
        private static void AddToBuckets(List<List<SwitchLabel>> buckets, SwitchLabel key) {
            if (buckets.Count > 0) {
                List<SwitchLabel> last = buckets[buckets.Count - 1];
                if (FitsInBucket(last, key.Key, 1)) {
                    last.Add(key);
                    // we might be able to merge now
                    MergeBuckets(buckets);
                    return;
                }
            }
            // else create a new bucket
            buckets.Add(new List<SwitchLabel> { key });
        }

        // Determines if the type is an integer we can switch on.
        private static bool CanOptimizeSwitchType(Type valueType) {
            // enums & char are allowed
            switch (Type.GetTypeCode(valueType)) {
                case TypeCode.Byte:
                case TypeCode.SByte:
                case TypeCode.Char:
                case TypeCode.Int16:
                case TypeCode.Int32:
                case TypeCode.UInt16:
                case TypeCode.UInt32:
                case TypeCode.Int64:
                case TypeCode.UInt64:
                    return true;
                default:
                    return false;
            }
        }

        // Tries to emit switch as a jmp table
        private bool TryEmitSwitchInstruction(SwitchExpression node, CompilationFlags flags) {
            // If we have a comparison, bail
            if (node.Comparison != null) {
                return false;
            }

            // Make sure the switch value type and the right side type
            // are types we can optimize
            Type type = node.SwitchValue.Type;
            if (!CanOptimizeSwitchType(type) ||
                !TypeUtils.AreEquivalent(type, node.Cases[0].TestValues[0].Type)) {
                return false;
            }

            // Make sure all test values are constant, or we can't emit the
            // jump table.
            if (!node.Cases.All(c => c.TestValues.All(t => t is ConstantExpression))) {
                return false;
            }

            //
            // We can emit the optimized switch, let's do it.
            //

            // Build target labels, collect keys.
            var labels = new Label[node.Cases.Count];
            var isGoto = new bool[node.Cases.Count];

            var uniqueKeys = new Set<decimal>();
            var keys = new List<SwitchLabel>();
            for (int i = 0; i < node.Cases.Count; i++) {

                DefineSwitchCaseLabel(node.Cases[i], out labels[i], out isGoto[i]);

                foreach (ConstantExpression test in node.Cases[i].TestValues) {
                    // Guarenteed to work thanks to CanOptimizeSwitchType.
                    //
                    // Use decimal because it can hold Int64 or UInt64 without
                    // precision loss or signed/unsigned conversions.
                    decimal key = ConvertSwitchValue(test.Value);

                    // Only add each key once. If it appears twice, it's
                    // allowed, but can't be reached.
                    if (!uniqueKeys.Contains(key)) {
                        keys.Add(new SwitchLabel(key, test.Value, labels[i]));
                        uniqueKeys.Add(key);
                    }
                }
            }

            // Sort the keys, and group them into buckets.
            keys.Sort((x, y) => Math.Sign(x.Key - y.Key));
            var buckets = new List<List<SwitchLabel>>();
            foreach (var key in keys) {
                AddToBuckets(buckets, key);
            }

            // Emit the switchValue
            LocalBuilder value = GetLocal(node.SwitchValue.Type);
            EmitExpression(node.SwitchValue);
            _ilg.Emit(OpCodes.Stloc, value);

            // Create end label, and default label if needed
            Label end = _ilg.DefineLabel();
            Label @default = (node.DefaultBody == null) ? end : _ilg.DefineLabel();

            // Emit the switch
            var info = new SwitchInfo(node, value, @default);
            EmitSwitchBuckets(info, buckets, 0, buckets.Count - 1);

            // Emit the case bodies and default
            EmitSwitchCases(node, labels, isGoto, @default, end, flags);

            FreeLocal(value);
            return true;
        }

        private static decimal ConvertSwitchValue(object value) {
            if (value is char) {
                return (int)(char)value;
            }
            return Convert.ToDecimal(value, CultureInfo.InvariantCulture);
        }

        /// <summary>
        /// Creates the label for this case.
        /// Optimization: if the body is just a goto, and we can branch
        /// to it, put the goto target directly in the jump table.
        /// </summary>
        private void DefineSwitchCaseLabel(SwitchCase @case, out Label label, out bool isGoto) {
            var jump = @case.Body as GotoExpression;
            // if it's a goto with no value
            if (jump != null && jump.Value == null) {
                // Reference the label from the switch. This will cause us to
                // analyze the jump target and determine if it is safe.
                LabelInfo jumpInfo = ReferenceLabel(jump.Target);

                // If we have are allowed to emit the "branch" opcode, then we
                // can jump directly there from the switch's jump table.
                // (Otherwise, we need to emit the goto later as a "leave".)
                if (jumpInfo.CanBranch) {
                    label = jumpInfo.Label;
                    isGoto = true;
                    return;
                }
            }
            // otherwise, just define a new label
            label = _ilg.DefineLabel();
            isGoto = false;
        }

        private void EmitSwitchCases(SwitchExpression node, Label[] labels, bool[] isGoto, Label @default, Label end, CompilationFlags flags) {
            // Jump to default (to handle the fallthrough case)
            _ilg.Emit(OpCodes.Br, @default);

            // Emit the cases
            for (int i = 0, n = node.Cases.Count; i < n; i++) {
                // If the body is a goto, we already emitted an optimized
                // branch directly to it. No need to emit anything else.
                if (isGoto[i]) {
                    continue;
                }

                _ilg.MarkLabel(labels[i]);
                EmitExpressionAsType(node.Cases[i].Body, node.Type, flags);

                // Last case doesn't need branch
                if (node.DefaultBody != null || i < n - 1) {
                    if ((flags & CompilationFlags.EmitAsTailCallMask) == CompilationFlags.EmitAsTail) {
                        //The switch case is at the tail of the lambda so
                        //it is safe to emit a Ret.
                        _ilg.Emit(OpCodes.Ret);
                    } else {
                        _ilg.Emit(OpCodes.Br, end);
                    }
                }
            }

            // Default value
            if (node.DefaultBody != null) {
                _ilg.MarkLabel(@default);
                EmitExpressionAsType(node.DefaultBody, node.Type, flags);
            }

            _ilg.MarkLabel(end);
        }

        private void EmitSwitchBuckets(SwitchInfo info, List<List<SwitchLabel>> buckets, int first, int last) {
            if (first == last) {
                EmitSwitchBucket(info, buckets[first]);
                return;
            }

            // Split the buckets into two groups, and use an if test to find
            // the right bucket. This ensures we'll only need O(lg(B)) tests
            // where B is the number of buckets
            int mid = (int)(((long)first + last + 1) / 2);

            if (first == mid - 1) {
                EmitSwitchBucket(info, buckets[first]);
            } else {
                // If the first half contains more than one, we need to emit an
                // explicit guard
                Label secondHalf = _ilg.DefineLabel();
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(buckets[mid - 1].Last().Constant);
                _ilg.Emit(info.IsUnsigned ? OpCodes.Bgt_Un : OpCodes.Bgt, secondHalf);
                EmitSwitchBuckets(info, buckets, first, mid - 1);
                _ilg.MarkLabel(secondHalf);
            }

            EmitSwitchBuckets(info, buckets, mid, last);
        }

        private void EmitSwitchBucket(SwitchInfo info, List<SwitchLabel> bucket) {
            // No need for switch if we only have one value
            if (bucket.Count == 1) {
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(bucket[0].Constant);
                _ilg.Emit(OpCodes.Beq, bucket[0].Label);
                return;
            }

            // 
            // If we're switching off of Int64/UInt64, we need more guards here
            // because we'll have to narrow the switch value to an Int32, and
            // we can't do that unless the value is in the right range.
            //
            Label? after = null;
            if (info.Is64BitSwitch) {
                after = _ilg.DefineLabel();
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(bucket.Last().Constant);
                _ilg.Emit(info.IsUnsigned ? OpCodes.Bgt_Un : OpCodes.Bgt, after.Value);
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(bucket[0].Constant);
                _ilg.Emit(info.IsUnsigned ? OpCodes.Blt_Un : OpCodes.Blt, after.Value);
            }

            _ilg.Emit(OpCodes.Ldloc, info.Value);

            // Normalize key
            decimal key = bucket[0].Key;
            if (key != 0) {
                _ilg.EmitConstant(bucket[0].Constant);
                _ilg.Emit(OpCodes.Sub);
            }

            if (info.Is64BitSwitch) {
                _ilg.Emit(OpCodes.Conv_I4);
            }

            // Collect labels
            int len = (int)(bucket[bucket.Count - 1].Key - bucket[0].Key + 1);
            Label[] jmpLabels = new Label[len];

            // Initialize all labels to the default
            int slot = 0;
            foreach (SwitchLabel label in bucket) {
                while (key++ != label.Key) {
                    jmpLabels[slot++] = info.Default;
                }
                jmpLabels[slot++] = label.Label;
            }

            // check we used all keys and filled all slots
            Debug.Assert(key == bucket[bucket.Count - 1].Key + 1);
            Debug.Assert(slot == jmpLabels.Length);

            // Finally, emit the switch instruction
            _ilg.Emit(OpCodes.Switch, jmpLabels);

            if (info.Is64BitSwitch) {
                _ilg.MarkLabel(after.Value);
            }
        }

        private bool TryEmitHashtableSwitch(SwitchExpression node, CompilationFlags flags) {
            // If we have a comparison other than string equality, bail
            if (node.Comparison != typeof(string).GetMethod("op_Equality", BindingFlags.Public | BindingFlags.Static | BindingFlags.ExactBinding, null, new[] { typeof(string), typeof(string) }, null)) {
                return false;
            }

            // All test values must be constant.
            int tests = 0;
            foreach (SwitchCase c in node.Cases) {
                foreach (Expression t in c.TestValues) {
                    if (!(t is ConstantExpression)) {
                        return false;
                    }
                    tests++;
                }
            }

            // Must have >= 7 labels for it to be worth it.
            if (tests < 7) {
                return false;
            }

            // If we're in a DynamicMethod, we could just build the dictionary
            // immediately. But that would cause the two code paths to be more
            // different than they really need to be.
            var initializers = new List<ElementInit>(tests);
            var cases = new List<SwitchCase>(node.Cases.Count);

            int nullCase = -1;
            MethodInfo add = typeof(Dictionary<string, int>).GetMethod("Add", new[] { typeof(string), typeof(int) });
            for (int i = 0, n = node.Cases.Count; i < n; i++) {
                foreach (ConstantExpression t in node.Cases[i].TestValues) {
                    if (t.Value != null) {
                        initializers.Add(Expression.ElementInit(add, t, Expression.Constant(i)));
                    } else {
                        nullCase = i;
                    }
                }
                cases.Add(Expression.SwitchCase(node.Cases[i].Body, Expression.Constant(i)));
            }

            // Create the field to hold the lazily initialized dictionary
            MemberExpression dictField = CreateLazyInitializedField<Dictionary<string, int>>("dictionarySwitch");

            // If we happen to initialize it twice (multithreaded case), it's
            // not the end of the world. The C# compiler does better here by
            // emitting a volatile access to the field.
            Expression dictInit = Expression.Condition(
                Expression.Equal(dictField, Expression.Constant(null, dictField.Type)),
                Expression.Assign(
                    dictField,
                    Expression.ListInit(
                        Expression.New(
                            typeof(Dictionary<string, int>).GetConstructor(new[] { typeof(int) }),
                            Expression.Constant(initializers.Count)
                        ),
                        initializers
                    )
                ),
                dictField
            );

            //
            // Create a tree like:
            //
            // switchValue = switchValueExpression;
            // if (switchValue == null) {
            //     switchIndex = nullCase;
            // } else {
            //     if (_dictField == null) {
            //         _dictField = new Dictionary<string, int>(count) { { ... }, ... };
            //     }
            //     if (!_dictField.TryGetValue(switchValue, out switchIndex)) {
            //         switchIndex = -1;
            //     }
            // }
            // switch (switchIndex) {
            //     case 0: ...
            //     case 1: ...
            //     ...
            //     default:
            // }
            //
            var switchValue = Expression.Variable(typeof(string), "switchValue");
            var switchIndex = Expression.Variable(typeof(int), "switchIndex");
            var reduced = Expression.Block(
                new[] { switchIndex, switchValue },
                Expression.Assign(switchValue, node.SwitchValue),
                Expression.IfThenElse(
                    Expression.Equal(switchValue, Expression.Constant(null, typeof(string))),
                    Expression.Assign(switchIndex, Expression.Constant(nullCase)),
                    Expression.IfThenElse(
                        Expression.Call(dictInit, "TryGetValue", null, switchValue, switchIndex),
                        Expression.Empty(),
                        Expression.Assign(switchIndex, Expression.Constant(-1))
                    )
                ),
                Expression.Switch(node.Type, switchIndex, node.DefaultBody, null, cases)
            );

            EmitExpression(reduced, flags);
            return true;
        }

        #endregion

        private void CheckRethrow() {
            // Rethrow is only valid inside a catch.
            for (LabelScopeInfo j = _labelBlock; j != null; j = j.Parent) {
                if (j.Kind == LabelScopeKind.Catch) {
                    return;
                } else if (j.Kind == LabelScopeKind.Finally) {
                    // Rethrow from inside finally is not verifiable
                    break;
                }
            }
            throw Error.RethrowRequiresCatch();
        }

        #region TryStatement

        private void CheckTry() {
            // Try inside a filter is not verifiable
            for (LabelScopeInfo j = _labelBlock; j != null; j = j.Parent) {
                if (j.Kind == LabelScopeKind.Filter) {
                    throw Error.TryNotAllowedInFilter();
                }
            }
        }

        private void EmitSaveExceptionOrPop(CatchBlock cb) {
            if (cb.Variable != null) {
                // If the variable is present, store the exception
                // in the variable.
                _scope.EmitSet(cb.Variable);
            } else {
                // Otherwise, pop it off the stack.
                _ilg.Emit(OpCodes.Pop);
            }
        }

        private void EmitTryExpression(Expression expr) {
            var node = (TryExpression)expr;

            CheckTry();

            //******************************************************************
            // 1. ENTERING TRY
            //******************************************************************

            PushLabelBlock(LabelScopeKind.Try);
            _ilg.BeginExceptionBlock();

            //******************************************************************
            // 2. Emit the try statement body
            //******************************************************************

            EmitExpression(node.Body);

            Type tryType = expr.Type;
            LocalBuilder value = null;
            if (tryType != typeof(void)) {
                //store the value of the try body
                value = GetLocal(tryType);
                _ilg.Emit(OpCodes.Stloc, value);
            }
            //******************************************************************
            // 3. Emit the catch blocks
            //******************************************************************

            foreach (CatchBlock cb in node.Handlers) {
                PushLabelBlock(LabelScopeKind.Catch);

                // Begin the strongly typed exception block
                if (cb.Filter == null) {
                    _ilg.BeginCatchBlock(cb.Test);
                } else {
                    _ilg.BeginExceptFilterBlock();
                }

                EnterScope(cb);

                EmitCatchStart(cb);

                //
                // Emit the catch block body
                //
                EmitExpression(cb.Body);
                if (tryType != typeof(void)) {
                    //store the value of the catch block body
                    _ilg.Emit(OpCodes.Stloc, value);
                }

                ExitScope(cb);

                PopLabelBlock(LabelScopeKind.Catch);
            }

            //******************************************************************
            // 4. Emit the finally block
            //******************************************************************

            if (node.Finally != null || node.Fault != null) {
                PushLabelBlock(LabelScopeKind.Finally);

                if (node.Finally != null) {
                    _ilg.BeginFinallyBlock();
                } else {
                    _ilg.BeginFaultBlock();
                }

                // Emit the body
                EmitExpressionAsVoid(node.Finally ?? node.Fault);

                _ilg.EndExceptionBlock();
                PopLabelBlock(LabelScopeKind.Finally);
            } else {
                _ilg.EndExceptionBlock();
            }

            if (tryType != typeof(void)) {
                _ilg.Emit(OpCodes.Ldloc, value);
                FreeLocal(value);
            }
            PopLabelBlock(LabelScopeKind.Try);
        }

        /// <summary>
        /// Emits the start of a catch block.  The exception value that is provided by the
        /// CLR is stored in the variable specified by the catch block or popped if no
        /// variable is provided.
        /// </summary>
        private void EmitCatchStart(CatchBlock cb) {
            if (cb.Filter == null) {
                EmitSaveExceptionOrPop(cb);
                return;
            }

            // emit filter block. Filter blocks are untyped so we need to do
            // the type check ourselves.  
            Label endFilter = _ilg.DefineLabel();
            Label rightType = _ilg.DefineLabel();

            // skip if it's not our exception type, but save
            // the exception if it is so it's available to the
            // filter
            _ilg.Emit(OpCodes.Isinst, cb.Test);
            _ilg.Emit(OpCodes.Dup);
            _ilg.Emit(OpCodes.Brtrue, rightType);
            _ilg.Emit(OpCodes.Pop);
            _ilg.Emit(OpCodes.Ldc_I4_0);
            _ilg.Emit(OpCodes.Br, endFilter);

            // it's our type, save it and emit the filter.
            _ilg.MarkLabel(rightType);
            EmitSaveExceptionOrPop(cb);
            PushLabelBlock(LabelScopeKind.Filter);
            EmitExpression(cb.Filter);
            PopLabelBlock(LabelScopeKind.Filter);

            // begin the catch, clear the exception, we've 
            // already saved it
            _ilg.MarkLabel(endFilter);
            _ilg.BeginCatchBlock(null);
            _ilg.Emit(OpCodes.Pop);
        }

        #endregion
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.