Source Code Cross Referenced for DFT3DOpImageTest.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » ca » forklabs » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » ca.forklabs.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * @(#) $Header: /cvs/jai-operators/src/tests/ca/forklabs/media/jai/opimage/DFT3DOpImageTest.java,v 1.3 2007/09/07 18:13:05 forklabs Exp $
003:         *
004:         * Copyright (C) 2006  DIRO Daniel Léonard
005:         */
006:
007:        package ca.forklabs.media.jai.opimage;
008:
009:        import java.awt.image.DataBuffer;
010:        import java.awt.image.Raster;
011:        import java.awt.image.RenderedImage;
012:        import java.util.Locale;
013:        import javax.media.jai.CollectionImage;
014:        import javax.media.jai.operator.DFTDataNature;
015:        import javax.media.jai.operator.DFTScalingType;
016:        import junit.framework.TestCase;
017:        import ca.forklabs.media.jai.RasterAdapter;
018:        import ca.forklabs.media.jai.SimpleCollectionImage;
019:        import ca.forklabs.media.jai.operator.DFT3DDescriptor;
020:
021:        /**
022:         * Class {@code DFT3DOpImageTest} tests class {@link DFT3DOpImage}.
023:         *
024:         * @author   <a href="mailto:forklabs at dev.java.net?subject=ca.forklabs.media.jai.opimage.DFT3DOpImageTest">Daniel Léonard</a>
025:         * @version $Revision: 1.3 $
026:         */
027:        @SuppressWarnings("nls")
028:        public class DFT3DOpImageTest extends TestCase {
029:
030:            //---------------------------
031:            // Constructors
032:            //---------------------------
033:
034:            /**
035:             * Constructor.
036:             * @param   name   the name of this test.
037:             */
038:            public DFT3DOpImageTest(String name) {
039:                super (name);
040:            }
041:
042:            //---------------------------
043:            // Test methods
044:            //---------------------------
045:
046:            private void compareArrays(String message, float[] expected,
047:                    float[] got) {
048:                assertEquals(message, expected.length, got.length);
049:                for (int i = 0; i < expected.length; i++) {
050:                    assertEquals(message, expected[i], got[i], 10e-6f);
051:                }
052:            }
053:
054:            private void compareArrays(String message, double[] expected,
055:                    double[] got) {
056:                assertEquals(message, expected.length, got.length);
057:                for (int i = 0; i < expected.length; i++) {
058:                    assertEquals(message, expected[i], got[i], 10e-6);
059:                }
060:            }
061:
062:            /**
063:             * Tests that it works for real to complex in floats
064:             */
065:            public void testRealToComplexInFloat() {
066:                RenderedImage[] sources = new RenderedImage[] {
067:                        RasterAdapter.buildFloatImage(new float[][] { { 1.0f,
068:                                2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f,
069:                                10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
070:                                16.0f, }, }, 4, 4),
071:                        RasterAdapter.buildFloatImage(new float[][] { { 17.0f,
072:                                18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f,
073:                                24.0f, 25.0f, 26.0f, 27.0f, 28.0f, 29.0f,
074:                                30.0f, 31.0f, 32.0f, }, }, 4, 4),
075:                        RasterAdapter.buildFloatImage(new float[][] { { 33.0f,
076:                                34.0f, 35.0f, 36.0f, 37.0f, 38.0f, 39.0f,
077:                                40.0f, 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
078:                                46.0f, 47.0f, 48.0f, }, }, 4, 4),
079:                        RasterAdapter.buildFloatImage(new float[][] { { 49.0f,
080:                                50.0f, 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
081:                                56.0f, 57.0f, 58.0f, 59.0f, 60.0f, 61.0f,
082:                                62.0f, 63.0f, 64.0f, }, }, 4, 4), };
083:
084:                DFT3DOpImage.Transform transform = DFT3DOpImage.FORWARD_TRANSFORM;
085:                DFTScalingType scaling = DFT3DDescriptor.SCALING_NONE;
086:                DFTDataNature nature = DFT3DDescriptor.REAL_TO_COMPLEX;
087:
088:                CollectionImage sinks = new DFT3DOpImage(
089:                        new SimpleCollectionImage(sources[0], sources[1],
090:                                sources[2], sources[3]), transform, scaling,
091:                        nature);
092:
093:                assertEquals(4, sinks.size());
094:
095:                Raster[] solutions = new Raster[] {
096:                        RasterAdapter.buildFloatImage(
097:                                new float[][] {
098:                                        { 2080.0f, -32.0f, -32.0f, -32.0f,
099:                                                -128.0f, 0.0f, 0.0f, 0.0f,
100:                                                -128.0f, 0.0f, 0.0f, 0.0f,
101:                                                -128.0f, 0.0f, 0.0f, 0.0f, },
102:                                        { 0.0f, 32.0f, 0.0f, -32.0f, 128.0f,
103:                                                0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
104:                                                0.0f, 0.0f, -128.0f, 0.0f,
105:                                                0.0f, 0.0f, }, }, 4, 4)
106:                                .getData(),
107:                        RasterAdapter
108:                                .buildFloatImage(
109:                                        new float[][] {
110:                                                { -512.0f, 0.0f, 0.0f, 0.0f,
111:                                                        0.0f, 0.0f, 0.0f, 0.0f,
112:                                                        0.0f, 0.0f, 0.0f, 0.0f,
113:                                                        0.0f, 0.0f, 0.0f, 0.0f, },
114:                                                { 512.0f, 0.0f, 0.0f, 0.0f,
115:                                                        0.0f, 0.0f, 0.0f, 0.0f,
116:                                                        0.0f, 0.0f, 0.0f, 0.0f,
117:                                                        0.0f, 0.0f, 0.0f, 0.0f, }, },
118:                                        4, 4).getData(),
119:                        RasterAdapter
120:                                .buildFloatImage(
121:                                        new float[][] {
122:                                                { -512.0f, 0.0f, 0.0f, 0.0f,
123:                                                        0.0f, 0.0f, 0.0f, 0.0f,
124:                                                        0.0f, 0.0f, 0.0f, 0.0f,
125:                                                        0.0f, 0.0f, 0.0f, 0.0f, },
126:                                                { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
127:                                                        0.0f, 0.0f, 0.0f, 0.0f,
128:                                                        0.0f, 0.0f, 0.0f, 0.0f,
129:                                                        0.0f, 0.0f, 0.0f, }, },
130:                                        4, 4).getData(),
131:                        RasterAdapter.buildFloatImage(
132:                                new float[][] {
133:                                        { -512.0f, 0.0f, 0.0f, 0.0f, 0.0f,
134:                                                0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
135:                                                0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
136:                                                0.0f, },
137:                                        { -512.0f, 0.0f, 0.0f, 0.0f, 0.0f,
138:                                                0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
139:                                                0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
140:                                                0.0f, }, }, 4, 4).getData(), };
141:
142:                for (int i = 0; i < sinks.size(); i++) {
143:                    RenderedImage sink = (RenderedImage) sinks.get(i);
144:                    Raster raster = sink.getData();
145:
146:                    assertEquals(0, raster.getMinX());
147:                    assertEquals(0, raster.getMinY());
148:                    assertEquals(4, raster.getWidth());
149:                    assertEquals(4, raster.getHeight());
150:                    assertEquals(2, raster.getNumBands());
151:                    assertEquals(DataBuffer.TYPE_FLOAT, raster.getSampleModel()
152:                            .getDataType());
153:
154:                    Raster solution = solutions[i];
155:
156:                    float[] got = null;
157:                    float[] expected = null;
158:                    for (int y = 0; y < 4; y++) {
159:                        for (int x = 0; x < 4; x++) {
160:                            got = raster.getPixel(x, y, got);
161:                            expected = solution.getPixel(x, y, expected);
162:                            this .compareArrays("(" + x + "," + y + "," + i
163:                                    + ")", expected, got);
164:                        }
165:                    }
166:                }
167:            }
168:
169:            /**
170:             * Tests that it works for real to complex in floats
171:             */
172:            public void testRealToComplexInDouble() {
173:                RenderedImage[] sources = new RenderedImage[] {
174:                        RasterAdapter.buildDoubleImage(new double[][] { { 1.0,
175:                                2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
176:                                11.0, 12.0, 13.0, 14.0, 15.0, 16.0, }, }, 4, 4),
177:                        RasterAdapter.buildDoubleImage(new double[][] { { 17.0,
178:                                18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0,
179:                                26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, }, },
180:                                4, 4),
181:                        RasterAdapter.buildDoubleImage(new double[][] { { 33.0,
182:                                34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0,
183:                                42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, }, },
184:                                4, 4),
185:                        RasterAdapter.buildDoubleImage(new double[][] { { 49.0,
186:                                50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0,
187:                                58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, }, },
188:                                4, 4), };
189:
190:                DFT3DOpImage.Transform transform = DFT3DOpImage.FORWARD_TRANSFORM;
191:                DFTScalingType scaling = DFT3DDescriptor.SCALING_NONE;
192:                DFTDataNature nature = DFT3DDescriptor.REAL_TO_COMPLEX;
193:
194:                CollectionImage sinks = new DFT3DOpImage(
195:                        new SimpleCollectionImage(sources[0], sources[1],
196:                                sources[2], sources[3]), transform, scaling,
197:                        nature);
198:
199:                assertEquals(4, sinks.size());
200:
201:                Raster[] solutions = new Raster[] {
202:                        RasterAdapter.buildDoubleImage(
203:                                new double[][] {
204:                                        { 2080.0, -32.0, -32.0, -32.0, -128.0,
205:                                                0.0, 0.0, 0.0, -128.0, 0.0,
206:                                                0.0, 0.0, -128.0, 0.0, 0.0,
207:                                                0.0, },
208:                                        { 0.0, 32.0, 0.0, -32.0, 128.0, 0.0,
209:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
210:                                                -128.0, 0.0, 0.0, 0.0, }, }, 4,
211:                                4).getData(),
212:                        RasterAdapter.buildDoubleImage(
213:                                new double[][] {
214:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
215:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
216:                                                0.0, 0.0, 0.0, },
217:                                        { 512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
218:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
219:                                                0.0, 0.0, 0.0, }, }, 4, 4)
220:                                .getData(),
221:                        RasterAdapter.buildDoubleImage(
222:                                new double[][] {
223:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
224:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
225:                                                0.0, 0.0, 0.0, },
226:                                        { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
227:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
228:                                                0.0, 0.0, 0.0, }, }, 4, 4)
229:                                .getData(),
230:                        RasterAdapter.buildDoubleImage(
231:                                new double[][] {
232:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
233:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
234:                                                0.0, 0.0, 0.0, },
235:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
236:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
237:                                                0.0, 0.0, 0.0, }, }, 4, 4)
238:                                .getData(), };
239:
240:                for (int i = 0; i < sinks.size(); i++) {
241:                    RenderedImage sink = (RenderedImage) sinks.get(i);
242:                    Raster raster = sink.getData();
243:
244:                    assertEquals(0, raster.getMinX());
245:                    assertEquals(0, raster.getMinY());
246:                    assertEquals(4, raster.getWidth());
247:                    assertEquals(4, raster.getHeight());
248:                    assertEquals(2, raster.getNumBands());
249:
250:                    Raster solution = solutions[i];
251:
252:                    double[] got = null;
253:                    double[] expected = null;
254:                    for (int y = 0; y < 4; y++) {
255:                        for (int x = 0; x < 4; x++) {
256:                            got = raster.getPixel(x, y, got);
257:                            expected = solution.getPixel(x, y, expected);
258:                            this .compareArrays("(" + x + "," + y + "," + i
259:                                    + ")", expected, got);
260:                        }
261:                    }
262:                }
263:            }
264:
265:            /**
266:             * Tests that it works for complex to real in floats
267:             */
268:            public void testComplexToRealInFloat() {
269:                Raster[] solutions = new Raster[] {
270:                        RasterAdapter
271:                                .buildFloatImage(
272:                                        new float[][] { { 1.0f, 2.0f, 3.0f,
273:                                                4.0f, 5.0f, 6.0f, 7.0f, 8.0f,
274:                                                9.0f, 10.0f, 11.0f, 12.0f,
275:                                                13.0f, 14.0f, 15.0f, 16.0f, }, },
276:                                        4, 4).getData(),
277:                        RasterAdapter.buildFloatImage(
278:                                new float[][] { { 17.0f, 18.0f, 19.0f, 20.0f,
279:                                        21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
280:                                        26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
281:                                        31.0f, 32.0f, }, }, 4, 4).getData(),
282:                        RasterAdapter.buildFloatImage(
283:                                new float[][] { { 33.0f, 34.0f, 35.0f, 36.0f,
284:                                        37.0f, 38.0f, 39.0f, 40.0f, 41.0f,
285:                                        42.0f, 43.0f, 44.0f, 45.0f, 46.0f,
286:                                        47.0f, 48.0f, }, }, 4, 4).getData(),
287:                        RasterAdapter.buildFloatImage(
288:                                new float[][] { { 49.0f, 50.0f, 51.0f, 52.0f,
289:                                        53.0f, 54.0f, 55.0f, 56.0f, 57.0f,
290:                                        58.0f, 59.0f, 60.0f, 61.0f, 62.0f,
291:                                        63.0f, 64.0f, }, }, 4, 4).getData(), };
292:
293:                RenderedImage[] sources = new RenderedImage[] {
294:                        RasterAdapter.buildFloatImage(new float[][] {
295:                                { 2080.0f, -32.0f, -32.0f, -32.0f, -128.0f,
296:                                        0.0f, 0.0f, 0.0f, -128.0f, 0.0f, 0.0f,
297:                                        0.0f, -128.0f, 0.0f, 0.0f, 0.0f, },
298:                                { 0.0f, 32.0f, 0.0f, -32.0f, 128.0f, 0.0f,
299:                                        0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
300:                                        -128.0f, 0.0f, 0.0f, 0.0f, }, }, 4, 4),
301:                        RasterAdapter.buildFloatImage(new float[][] {
302:                                { -512.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
303:                                        0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
304:                                        0.0f, 0.0f, 0.0f, },
305:                                { 512.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
306:                                        0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
307:                                        0.0f, 0.0f, 0.0f, }, }, 4, 4),
308:                        RasterAdapter.buildFloatImage(new float[][] {
309:                                { -512.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
310:                                        0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
311:                                        0.0f, 0.0f, 0.0f, },
312:                                { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
313:                                        0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
314:                                        0.0f, 0.0f, 0.0f, }, }, 4, 4),
315:                        RasterAdapter.buildFloatImage(new float[][] {
316:                                { -512.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
317:                                        0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
318:                                        0.0f, 0.0f, 0.0f, },
319:                                { -512.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
320:                                        0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
321:                                        0.0f, 0.0f, 0.0f, }, }, 4, 4), };
322:
323:                DFT3DOpImage.Transform transform = DFT3DOpImage.INVERSE_TRANSFORM;
324:                DFTScalingType scaling = DFT3DDescriptor.SCALING_DIMENSIONS;
325:                DFTDataNature nature = DFT3DDescriptor.COMPLEX_TO_REAL;
326:
327:                CollectionImage sinks = new DFT3DOpImage(
328:                        new SimpleCollectionImage(sources[0], sources[1],
329:                                sources[2], sources[3]), transform, scaling,
330:                        nature);
331:
332:                assertEquals(4, sinks.size());
333:
334:                for (int i = 0; i < sinks.size(); i++) {
335:                    RenderedImage sink = (RenderedImage) sinks.get(i);
336:                    Raster raster = sink.getData();
337:
338:                    assertEquals(0, raster.getMinX());
339:                    assertEquals(0, raster.getMinY());
340:                    assertEquals(4, raster.getWidth());
341:                    assertEquals(4, raster.getHeight());
342:                    assertEquals(1, raster.getNumBands());
343:
344:                    Raster solution = solutions[i];
345:
346:                    float[] got = null;
347:                    float[] expected = null;
348:                    for (int y = 0; y < 4; y++) {
349:                        for (int x = 0; x < 4; x++) {
350:                            got = raster.getPixel(x, y, got);
351:                            expected = solution.getPixel(x, y, expected);
352:                            this .compareArrays("(" + x + "," + y + "," + i
353:                                    + ")", expected, got);
354:                        }
355:                    }
356:                }
357:            }
358:
359:            /**
360:             * Tests that it works for complex to real in doubles
361:             */
362:            public void testComplexToRealInDouble() {
363:                Raster[] solutions = new Raster[] {
364:                        RasterAdapter.buildDoubleImage(
365:                                new double[][] { { 1.0, 2.0, 3.0, 4.0, 5.0,
366:                                        6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
367:                                        13.0, 14.0, 15.0, 16.0, }, }, 4, 4)
368:                                .getData(),
369:                        RasterAdapter
370:                                .buildDoubleImage(
371:                                        new double[][] { { 17.0, 18.0, 19.0,
372:                                                20.0, 21.0, 22.0, 23.0, 24.0,
373:                                                25.0, 26.0, 27.0, 28.0, 29.0,
374:                                                30.0, 31.0, 32.0, }, }, 4, 4)
375:                                .getData(),
376:                        RasterAdapter
377:                                .buildDoubleImage(
378:                                        new double[][] { { 33.0, 34.0, 35.0,
379:                                                36.0, 37.0, 38.0, 39.0, 40.0,
380:                                                41.0, 42.0, 43.0, 44.0, 45.0,
381:                                                46.0, 47.0, 48.0, }, }, 4, 4)
382:                                .getData(),
383:                        RasterAdapter
384:                                .buildDoubleImage(
385:                                        new double[][] { { 49.0, 50.0, 51.0,
386:                                                52.0, 53.0, 54.0, 55.0, 56.0,
387:                                                57.0, 58.0, 59.0, 60.0, 61.0,
388:                                                62.0, 63.0, 64.0, }, }, 4, 4)
389:                                .getData(), };
390:
391:                RenderedImage[] sources = new RenderedImage[] {
392:                        RasterAdapter.buildDoubleImage(new double[][] {
393:                                { 2080.0, -32.0, -32.0, -32.0, -128.0, 0.0,
394:                                        0.0, 0.0, -128.0, 0.0, 0.0, 0.0,
395:                                        -128.0, 0.0, 0.0, 0.0, },
396:                                { 0.0, 32.0, 0.0, -32.0, 128.0, 0.0, 0.0, 0.0,
397:                                        0.0, 0.0, 0.0, 0.0, -128.0, 0.0, 0.0,
398:                                        0.0, }, }, 4, 4),
399:                        RasterAdapter.buildDoubleImage(
400:                                new double[][] {
401:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
402:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
403:                                                0.0, 0.0, 0.0, },
404:                                        { 512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
405:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
406:                                                0.0, 0.0, 0.0, }, }, 4, 4),
407:                        RasterAdapter.buildDoubleImage(
408:                                new double[][] {
409:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
410:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
411:                                                0.0, 0.0, 0.0, },
412:                                        { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
413:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
414:                                                0.0, 0.0, 0.0, }, }, 4, 4),
415:                        RasterAdapter.buildDoubleImage(
416:                                new double[][] {
417:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
418:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
419:                                                0.0, 0.0, 0.0, },
420:                                        { -512.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
421:                                                0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
422:                                                0.0, 0.0, 0.0, }, }, 4, 4), };
423:
424:                DFT3DOpImage.Transform transform = DFT3DOpImage.INVERSE_TRANSFORM;
425:                DFTScalingType scaling = DFT3DDescriptor.SCALING_DIMENSIONS;
426:                DFTDataNature nature = DFT3DDescriptor.COMPLEX_TO_REAL;
427:
428:                CollectionImage sinks = new DFT3DOpImage(
429:                        new SimpleCollectionImage(sources[0], sources[1],
430:                                sources[2], sources[3]), transform, scaling,
431:                        nature);
432:
433:                assertEquals(4, sinks.size());
434:
435:                for (int i = 0; i < sinks.size(); i++) {
436:                    RenderedImage sink = (RenderedImage) sinks.get(i);
437:                    Raster raster = sink.getData();
438:
439:                    assertEquals(0, raster.getMinX());
440:                    assertEquals(0, raster.getMinY());
441:                    assertEquals(4, raster.getWidth());
442:                    assertEquals(4, raster.getHeight());
443:                    assertEquals(1, raster.getNumBands());
444:
445:                    Raster solution = solutions[i];
446:
447:                    double[] got = null;
448:                    double[] expected = null;
449:                    for (int y = 0; y < 4; y++) {
450:                        for (int x = 0; x < 4; x++) {
451:                            got = raster.getPixel(x, y, got);
452:                            expected = solution.getPixel(x, y, expected);
453:                            this .compareArrays("(" + x + "," + y + "," + i
454:                                    + ")", expected, got);
455:                        }
456:                    }
457:                }
458:            }
459:
460:            // BUG : test complex-to-complex in float
461:            // BUG : test complex-to-complex in double
462:            // BUG : test with a cubic image of width 1
463:            // BUG : test with a cubic image of length 1
464:            // BUG : test with a cubic image of depth 1 (should be same as the normal dft and idft)
465:
466:            /**
467:             * Tests the English messages.
468:             */
469:            public void testEnglishMessages() {
470:                Locale locale = Locale.getDefault();
471:                Locale.setDefault(Locale.ENGLISH);
472:
473:                try {
474:                    String[] expected = new String[] {
475:                            "Expected either DataBuffer.TYPE_FLOAT or DataBuffer.TYPE_DOUBLE but got (10)",
476:                            "The data nature (null) is unknown", };
477:
478:                    DFT3DOpImage image = new DFT3DOpImage(null, null, null,
479:                            null) {
480:                        @Override
481:                        protected void transform(CollectionImage sources,
482:                                Transform transform, DFTScalingType scaling,
483:                                DFTDataNature nature) { /* nothing */
484:                        }
485:                    };
486:                    DFT3DOpImage.PixelSpecialization<int[]> specialization = new DFT3DOpImage.PixelSpecialization<int[]>() {
487:                        @Override
488:                        public void drain(int[] real, int[] imag,
489:                                DataBuffer buffer, int band, int offset,
490:                                DFTDataNature nature) { /* nothing */
491:                        }
492:
493:                        @Override
494:                        public void fill(int[] real, int[] imag,
495:                                DataBuffer buffer, int band, int offset,
496:                                DFTDataNature nature) { /* nothing */
497:                        }
498:
499:                        @Override
500:                        public DataBuffer newSinkBuffer(int size, int bands,
501:                                DFTDataNature nature) {
502:                            return null;
503:                        }
504:
505:                        @Override
506:                        public int[] newWorkingArray(int len) {
507:                            return null;
508:                        }
509:                    };
510:                    String[] got = new String[] { image.getBadDataType(10),
511:                            specialization.getUnknownDataNature(null), };
512:
513:                    assertEquals(expected.length, got.length);
514:
515:                    for (int i = 0; i < expected.length; i++) {
516:                        assertEquals("[" + i + "]", expected[i], got[i]);
517:                    }
518:                } finally {
519:                    Locale.setDefault(locale);
520:                }
521:            }
522:
523:            /**
524:             * Tests the French messages.
525:             */
526:            public void testFrenchMessages() {
527:                Locale locale = Locale.getDefault();
528:                Locale.setDefault(Locale.FRENCH);
529:
530:                try {
531:                    String[] expected = new String[] {
532:                            "Attendais soit DataBuffer.TYPE_FLOAT ou DataBuffer.TYPE_DOUBLE mais ai recu (10)",
533:                            "La nature des données (null) est inconnue", };
534:
535:                    DFT3DOpImage image = new DFT3DOpImage(null, null, null,
536:                            null) {
537:                        @Override
538:                        protected void transform(CollectionImage sources,
539:                                Transform transform, DFTScalingType scaling,
540:                                DFTDataNature nature) { /* nothing */
541:                        }
542:                    };
543:                    DFT3DOpImage.PixelSpecialization<int[]> specialization = new DFT3DOpImage.PixelSpecialization<int[]>() {
544:                        @Override
545:                        public void drain(int[] real, int[] imag,
546:                                DataBuffer buffer, int band, int offset,
547:                                DFTDataNature nature) { /* nothing */
548:                        }
549:
550:                        @Override
551:                        public void fill(int[] real, int[] imag,
552:                                DataBuffer buffer, int band, int offset,
553:                                DFTDataNature nature) { /* nothing */
554:                        }
555:
556:                        @Override
557:                        public DataBuffer newSinkBuffer(int size, int bands,
558:                                DFTDataNature nature) {
559:                            return null;
560:                        }
561:
562:                        @Override
563:                        public int[] newWorkingArray(int len) {
564:                            return null;
565:                        }
566:                    };
567:                    String[] got = new String[] { image.getBadDataType(10),
568:                            specialization.getUnknownDataNature(null), };
569:
570:                    assertEquals(expected.length, got.length);
571:
572:                    for (int i = 0; i < expected.length; i++) {
573:                        assertEquals("[" + i + "]", expected[i], got[i]);
574:                    }
575:                } finally {
576:                    Locale.setDefault(locale);
577:                }
578:            }
579:
580:            //---------------------------
581:            // Class methods
582:            //---------------------------
583:
584:            /**
585:             * Runs only this test.
586:             * @param   args   ignored.
587:             */
588:            public static void main(String... args) {
589:                junit.swingui.TestRunner.run(DFT3DOpImageTest.class);
590:            }
591:
592:        }
593:
594:        /*
595:         * $Log: DFT3DOpImageTest.java,v $
596:         * Revision 1.3  2007/09/07 18:13:05  forklabs
597:         * Added test markers.
598:         *
599:         * Revision 1.2  2007/07/05 18:29:50  forklabs
600:         * Now uses CollectionImage instead of lists.
601:         *
602:         * Revision 1.1  2007/06/05 02:27:50  forklabs
603:         * Operators dft3d and idft3d
604:         *
605:         */
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.