Source Code Cross Referenced for BitstreamReaderAgent.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » jj2000 » j2k » codestream » reader » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » jj2000.j2k.codestream.reader 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * $RCSfile: BitstreamReaderAgent.java,v $
0003:         * $Revision: 1.1 $
0004:         * $Date: 2005/02/11 05:02:00 $
0005:         * $State: Exp $
0006:         *
0007:         * Class:                   BitstreamReaderAgent
0008:         *
0009:         * Description:             The generic interface for bit stream
0010:         *                          transport agents.
0011:         *
0012:         *
0013:         *
0014:         * COPYRIGHT:
0015:         *
0016:         * This software module was originally developed by Raphaël Grosbois and
0017:         * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel
0018:         * Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David
0019:         * Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research
0020:         * Centre France S.A) in the course of development of the JPEG2000
0021:         * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This
0022:         * software module is an implementation of a part of the JPEG 2000
0023:         * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio
0024:         * Systems AB and Canon Research Centre France S.A (collectively JJ2000
0025:         * Partners) agree not to assert against ISO/IEC and users of the JPEG
0026:         * 2000 Standard (Users) any of their rights under the copyright, not
0027:         * including other intellectual property rights, for this software module
0028:         * with respect to the usage by ISO/IEC and Users of this software module
0029:         * or modifications thereof for use in hardware or software products
0030:         * claiming conformance to the JPEG 2000 Standard. Those intending to use
0031:         * this software module in hardware or software products are advised that
0032:         * their use may infringe existing patents. The original developers of
0033:         * this software module, JJ2000 Partners and ISO/IEC assume no liability
0034:         * for use of this software module or modifications thereof. No license
0035:         * or right to this software module is granted for non JPEG 2000 Standard
0036:         * conforming products. JJ2000 Partners have full right to use this
0037:         * software module for his/her own purpose, assign or donate this
0038:         * software module to any third party and to inhibit third parties from
0039:         * using this software module for non JPEG 2000 Standard conforming
0040:         * products. This copyright notice must be included in all copies or
0041:         * derivative works of this software module.
0042:         *
0043:         * Copyright (c) 1999/2000 JJ2000 Partners.
0044:         *  */
0045:        package jj2000.j2k.codestream.reader;
0046:
0047:        import java.awt.Point;
0048:
0049:        import jj2000.j2k.quantization.dequantizer.*;
0050:        import jj2000.j2k.wavelet.synthesis.*;
0051:        import jj2000.j2k.entropy.decoder.*;
0052:        import jj2000.j2k.codestream.*;
0053:        import jj2000.j2k.wavelet.*;
0054:        import jj2000.j2k.decoder.*;
0055:        import jj2000.j2k.image.*;
0056:        import jj2000.j2k.util.*;
0057:        import jj2000.j2k.io.*;
0058:        import jj2000.j2k.*;
0059:
0060:        import java.io.*;
0061:
0062:        import com.sun.media.imageioimpl.plugins.jpeg2000.J2KImageReadParamJava;
0063:
0064:        /**
0065:         * This is the generic interface for bit stream reader agents. A bit stream
0066:         * reader agent is an entity that allows reading from a bit stream and
0067:         * requesting compressed code-blocks. It can be a simple file reader, or a
0068:         * network connection, or anything else.
0069:         *
0070:         * <P>The bit stream reader agent allows to make request for compressed block
0071:         * data in any order. The amount of data returned would normally depend on the
0072:         * data available at the time of the request, be it from a file or from a
0073:         * network connection.
0074:         *
0075:         * <P>The bit stream reader agent has the notion of a current tile, and
0076:         * coordinates are relative to the current tile, where applicable.
0077:         *
0078:         * <P>Resolution level 0 is the lowest resolution level, i.e. the LL subband
0079:         * alone.
0080:         * */
0081:        public abstract class BitstreamReaderAgent implements 
0082:                CodedCBlkDataSrcDec {
0083:
0084:            /** The decoder specifications */
0085:            protected DecoderSpecs decSpec;
0086:
0087:            /**
0088:             * Whether or not the components in the current tile uses a derived
0089:             * quantization step size (only relevant in non reversible quantization
0090:             * mode). This field is actualized by the setTile method in
0091:             * FileBitstreamReaderAgent.
0092:             *
0093:             * @see FileBitstreamReaderAgent#initSubbandsFields
0094:             * */
0095:            protected boolean derived[] = null;
0096:
0097:            /**
0098:             * Number of guard bits off all component in the current tile. This field
0099:             * is actualized by the setTile method in FileBitstreamReaderAgent.
0100:             *
0101:             * @see FileBitstreamReaderAgent#initSubbandsFields
0102:             * */
0103:            protected int[] gb = null;
0104:
0105:            /**
0106:             * Dequantization parameters of all subbands and all components in the
0107:             * current tile. The value is actualized by the setTile method in
0108:             * FileBitstreamReaderAgent.
0109:             *
0110:             * @see FileBitstreamReaderAgent#initSubbandsFields
0111:             * */
0112:            protected StdDequantizerParams params[] = null;
0113:
0114:            /** The prefix for bit stream reader options: 'B' */
0115:            public final static char OPT_PREFIX = 'B';
0116:
0117:            /** The list of parameters that is accepted by the bit stream
0118:             * readers. They start with 'B'. */
0119:            private static final String[][] pinfo = null;
0120:
0121:            /**
0122:             * The maximum number of decompostion levels for each component of the
0123:             * current tile. It means that component c has mdl[c]+1 resolution levels
0124:             * (indexed from 0 to mdl[c])
0125:             * */
0126:            protected int mdl[];
0127:
0128:            /** The number of components */
0129:            protected final int nc;
0130:
0131:            /** Image resolution level to generate */
0132:            protected int targetRes;
0133:
0134:            /**
0135:             * The subband trees for each component in the current tile. Each element
0136:             * in the array is the root element of the subband tree for a
0137:             * component. The number of magnitude bits in each subband (magBits member
0138:             * variable) is not initialized.
0139:             * */
0140:            protected SubbandSyn subbTrees[];
0141:
0142:            /** The image width on the hi-res reference grid */
0143:            protected final int imgW;
0144:
0145:            /** The image width on the hi-res reference grid */
0146:            protected final int imgH;
0147:
0148:            /** The horizontal coordinate of the image origin in the canvas system, on
0149:             * the reference grid. */
0150:            protected final int ax;
0151:
0152:            /** The vertical coordinate of the image origin in the canvas system, on
0153:             * the reference grid. */
0154:            protected final int ay;
0155:
0156:            /** The horizontal coordinate of the tiling origin in the canvas system, on
0157:             * the reference grid. */
0158:            protected final int px;
0159:
0160:            /** The vertical coordinate of the tiling origin in the canvas system, on
0161:             * the reference grid. */
0162:            protected final int py;
0163:
0164:            /** The horizontal offsets of the upper-left corner of the current tile
0165:             * (not active tile) with respect to the canvas origin, in the component
0166:             * hi-res grid, for each component. */
0167:            protected final int offX[];
0168:
0169:            /** The vertical offsets of the upper-left corner of the current tile (not
0170:             * active tile) with respect to the canvas origin, in the component hi-res
0171:             * grid, for each component. */
0172:            protected final int offY[];
0173:
0174:            /** The horizontal coordinates of the upper-left corner of the active
0175:             * tile, with respect to the canvas origin, in the component hi-res grid,
0176:             * for each component. */
0177:            protected final int culx[];
0178:
0179:            /** The vertical coordinates of the upper-left corner of the active tile,
0180:             * with respect to the canvas origin, in the component hi-res grid, for
0181:             * each component. */
0182:            protected final int culy[];
0183:
0184:            /** The nominal tile width, in the hi-res reference grid */
0185:            protected final int ntW;
0186:
0187:            /** The nominal tile height, in the hi-res reference grid */
0188:            protected final int ntH;
0189:
0190:            /** The number of tile in the horizontal direction */
0191:            protected final int ntX;
0192:
0193:            /** The number of tiles in the vertical direction */
0194:            protected final int ntY;
0195:
0196:            /** The total number of tiles. */
0197:            protected final int nt;
0198:
0199:            /** The current tile horizontal index */
0200:            protected int ctX;
0201:
0202:            /** The current tile vertical index */
0203:            protected int ctY;
0204:
0205:            /** The decoded bit stream header */
0206:            protected final HeaderDecoder hd;
0207:
0208:            /** Number of bytes targeted to be read */
0209:            protected int tnbytes;
0210:
0211:            /** Actual number of read bytes */
0212:            protected int anbytes;
0213:
0214:            /** Target decoding rate in bpp */
0215:            protected float trate;
0216:
0217:            /** Actual decoding rate in bpp */
0218:            protected float arate;
0219:
0220:            /**
0221:             * Initializes members of this class. This constructor takes a
0222:             * HeaderDecoder object. This object must be initialized by the
0223:             * constructor of the implementing class from the header of the bit
0224:             * stream.
0225:             *
0226:             * @param hd The decoded header of the bit stream from where to initialize
0227:             * the values.
0228:             *
0229:             * @param decSpec The decoder specifications
0230:             * */
0231:            protected BitstreamReaderAgent(HeaderDecoder hd,
0232:                    DecoderSpecs decSpec) {
0233:                Point co;
0234:                int i, j, max;
0235:
0236:                this .decSpec = decSpec;
0237:                this .hd = hd;
0238:
0239:                // Number of components
0240:                nc = hd.getNumComps();
0241:                offX = new int[nc];
0242:                offY = new int[nc];
0243:                culx = new int[nc];
0244:                culy = new int[nc];
0245:
0246:                // Image size and origin
0247:                imgW = hd.getImgWidth();
0248:                imgH = hd.getImgHeight();
0249:                ax = hd.getImgULX();
0250:                ay = hd.getImgULY();
0251:
0252:                // Tiles
0253:                co = hd.getTilingOrigin(null);
0254:                px = co.x;
0255:                py = co.y;
0256:                ntW = hd.getNomTileWidth();
0257:                ntH = hd.getNomTileHeight();
0258:                ntX = (ax + imgW - px + ntW - 1) / ntW;
0259:                ntY = (ay + imgH - py + ntH - 1) / ntH;
0260:                nt = ntX * ntY;
0261:            }
0262:
0263:            /**
0264:             * Returns the vertical code-block partition origin. Allowable values are
0265:             * 0 and 1, nothing else.
0266:             * */
0267:            public final int getCbULX() {
0268:                return hd.getCbULX();
0269:            }
0270:
0271:            /**
0272:             * Returns the vertical code-block partition origin. Allowable values are
0273:             * 0 and 1, nothing else.
0274:             * */
0275:            public int getCbULY() {
0276:                return hd.getCbULY();
0277:            }
0278:
0279:            /**
0280:             * Returns the number of components in the image.
0281:             *
0282:             * @return The number of components in the image.
0283:             * */
0284:            public final int getNumComps() {
0285:                return nc;
0286:            }
0287:
0288:            /**
0289:             * Returns the component subsampling factor in the horizontal direction,
0290:             * for the specified component. This is, approximately, the ratio of
0291:             * dimensions between the reference grid and the component itself, see the
0292:             * 'ImgData' interface desription for details.
0293:             *
0294:             * @param c The index of the component (between 0 and N-1)
0295:             *
0296:             * @return The horizontal subsampling factor of component 'c'
0297:             *
0298:             * @see jj2000.j2k.image.ImgData
0299:             * */
0300:            public final int getCompSubsX(int c) {
0301:                return hd.getCompSubsX(c);
0302:            }
0303:
0304:            /**
0305:             * Returns the component subsampling factor in the vertical direction, for
0306:             * the specified component. This is, approximately, the ratio of
0307:             * dimensions between the reference grid and the component itself, see the
0308:             * 'ImgData' interface desription for details.
0309:             *
0310:             * @param c The index of the component (between 0 and C-1)
0311:             *
0312:             * @return The vertical subsampling factor of component 'c'
0313:             *
0314:             * @see jj2000.j2k.image.ImgData
0315:             * */
0316:            public int getCompSubsY(int c) {
0317:                return hd.getCompSubsY(c);
0318:            }
0319:
0320:            /**
0321:             * Returns the overall width of the current tile in pixels for the given
0322:             * (tile) resolution level. This is the tile's width without accounting
0323:             * for any component subsampling.
0324:             *
0325:             * <P>Note: Tile resolution level indexes may be different from
0326:             * tile-component resolution index. They are indeed indexed starting from
0327:             * the lowest number of decomposition levels of each component of the
0328:             * tile.
0329:             *
0330:             * <P>For an image (1 tile) with 2 components (component 0 having 2
0331:             * decomposition levels and component 1 having 3 decomposition levels),
0332:             * the first (tile-)component has 3 resolution levels and the second one
0333:             * has 4 resolution levels, whereas the tile has only 3 resolution levels
0334:             * available.
0335:             *
0336:             * @param rl The (tile) resolution level.
0337:             *
0338:             * @return The current tile's width in pixels.
0339:             * */
0340:            public int getTileWidth(int rl) {
0341:                // The minumum number of decomposition levels between all the
0342:                // components
0343:                int mindl = decSpec.dls.getMinInTile(getTileIdx());
0344:                if (rl > mindl) {
0345:                    throw new IllegalArgumentException(
0346:                            "Requested resolution level"
0347:                                    + " is not available for, at "
0348:                                    + "least, one component in " + "tile: "
0349:                                    + ctX + "x" + ctY);
0350:                }
0351:                int ctulx, ntulx;
0352:                int dl = mindl - rl; // Number of decomposition to obtain this
0353:                // resolution
0354:
0355:                // Calculate starting X of current tile at hi-res
0356:                ctulx = (ctX == 0) ? ax : px + ctX * ntW;
0357:                // Calculate starting X of next tile X-wise at hi-res
0358:                ntulx = (ctX < ntX - 1) ? px + (ctX + 1) * ntW : ax + imgW;
0359:                dl = 1 << dl;
0360:                // The difference at the rl resolution level is the width
0361:                return (ntulx + dl - 1) / dl - (ctulx + dl - 1) / dl;
0362:            }
0363:
0364:            /**
0365:             * Returns the overall height of the current tile in pixels, for the given
0366:             * resolution level. This is the tile's height without accounting for any
0367:             * component subsampling.
0368:             *
0369:             * <P>Note: Tile resolution level indexes may be different from
0370:             * tile-component resolution index. They are indeed indexed starting from
0371:             * the lowest number of decomposition levels of each component of the
0372:             * tile.
0373:             *
0374:             * <P>For an image (1 tile) with 2 components (component 0 having 2
0375:             * decomposition levels and component 1 having 3 decomposition levels),
0376:             * the first (tile-)component has 3 resolution levels and the second one
0377:             * has 4 resolution levels, whereas the tile has only 3 resolution levels
0378:             * available.
0379:             *
0380:             * @param rl The (tile) resolution level.
0381:             *
0382:             * @return The total current tile's height in pixels.
0383:             * */
0384:            public int getTileHeight(int rl) {
0385:                // The minumum number of decomposition levels between all the
0386:                // components
0387:                int mindl = decSpec.dls.getMinInTile(getTileIdx());
0388:                if (rl > mindl) {
0389:                    throw new IllegalArgumentException(
0390:                            "Requested resolution level"
0391:                                    + " is not available for, at "
0392:                                    + "least, one component in" + " tile: "
0393:                                    + ctX + "x" + ctY);
0394:                }
0395:
0396:                int ctuly, ntuly;
0397:                int dl = mindl - rl; // Number of decomposition to obtain this
0398:                // resolution
0399:
0400:                // Calculate starting Y of current tile at hi-res
0401:                ctuly = (ctY == 0) ? ay : py + ctY * ntH;
0402:                // Calculate starting Y of next tile Y-wise at hi-res
0403:                ntuly = (ctY < ntY - 1) ? py + (ctY + 1) * ntH : ay + imgH;
0404:                dl = 1 << dl;
0405:                // The difference at the rl level is the height
0406:                return (ntuly + dl - 1) / dl - (ctuly + dl - 1) / dl;
0407:            }
0408:
0409:            /**
0410:             * Returns the overall width of the image in pixels, for the given (image)
0411:             * resolution level. This is the image's width without accounting for any
0412:             * component subsampling or tiling.
0413:             *
0414:             * <P>Note: Image resolution level indexes may differ from tile-component
0415:             * resolution index. They are indeed indexed starting from the lowest
0416:             * number of decomposition levels of each component of each tile.
0417:             *
0418:             * <P>Example: For an image (1 tile) with 2 components (component 0 having
0419:             * 2 decomposition levels and component 1 having 3 decomposition levels),
0420:             * the first (tile-) component has 3 resolution levels and the second one
0421:             * has 4 resolution levels, whereas the image has only 3 resolution levels
0422:             * available.
0423:             *
0424:             * @param rl The image resolution level.
0425:             *
0426:             * @return The total image's width in pixels.
0427:             * */
0428:            public int getImgWidth(int rl) {
0429:                // The minimum number of decomposition levels of each
0430:                // tile-component
0431:                int mindl = decSpec.dls.getMin();
0432:                if (rl > mindl) {
0433:                    throw new IllegalArgumentException(
0434:                            "Requested resolution level"
0435:                                    + " is not available for, at "
0436:                                    + "least, one tile-component");
0437:                }
0438:                // Retrieve number of decomposition levels corresponding to
0439:                // this resolution level
0440:                int dl = 1 << mindl - rl;
0441:                return (ax + imgW + dl - 1) / dl - (ax + dl - 1) / dl;
0442:            }
0443:
0444:            /**
0445:             * Returns the overall height of the image in pixels, for the given
0446:             * resolution level. This is the image's height without accounting for any
0447:             * component subsampling or tiling.
0448:             *
0449:             * <P>Note: Image resolution level indexes may differ from tile-component
0450:             * resolution index. They are indeed indexed starting from the lowest
0451:             * number of decomposition levels of each component of each tile.
0452:             *
0453:             * <P>Example: For an image (1 tile) with 2 components (component 0 having
0454:             * 2 decomposition levels and component 1 having 3 decomposition levels),
0455:             * the first (tile-) component has 3 resolution levels and the second one
0456:             * has 4 resolution levels, whereas the image has only 3 resolution levels
0457:             * available.
0458:             *
0459:             * @param rl The image resolution level, from 0 to L.
0460:             *
0461:             * @return The total image's height in pixels.
0462:             * */
0463:            public int getImgHeight(int rl) {
0464:                int mindl = decSpec.dls.getMin();
0465:                if (rl > mindl) {
0466:                    throw new IllegalArgumentException(
0467:                            "Requested resolution level"
0468:                                    + " is not available for, at "
0469:                                    + "least, one tile-component");
0470:                }
0471:                // Retrieve number of decomposition levels corresponding to this
0472:                // resolution level
0473:                int dl = 1 << mindl - rl;
0474:                return (ay + imgH + dl - 1) / dl - (ay + dl - 1) / dl;
0475:            }
0476:
0477:            /**
0478:             * Returns the horizontal coordinate of the image origin, the top-left
0479:             * corner, in the canvas system, on the reference grid at the specified
0480:             * resolution level.
0481:             *
0482:             * <P>Note: Image resolution level indexes may differ from tile-component
0483:             * resolution index. They are indeed indexed starting from the lowest
0484:             * number of decomposition levels of each component of each tile.
0485:             *
0486:             * <P>Example: For an image (1 tile) with 2 components (component 0 having
0487:             * 2 decomposition levels and component 1 having 3 decomposition levels),
0488:             * the first (tile-) component has 3 resolution levels and the second one
0489:             * has 4 resolution levels, whereas the image has only 3 resolution levels
0490:             * available.
0491:             *
0492:             * @param rl The resolution level, from 0 to L.
0493:             *
0494:             * @return The horizontal coordinate of the image origin in the canvas
0495:             * system, on the reference grid.
0496:             * */
0497:            public int getImgULX(int rl) {
0498:                int mindl = decSpec.dls.getMin();
0499:                if (rl > mindl) {
0500:                    throw new IllegalArgumentException(
0501:                            "Requested resolution level"
0502:                                    + " is not available for, at "
0503:                                    + "least, one tile-component");
0504:                }
0505:                // Retrieve number of decomposition levels corresponding to this
0506:                // resolution level
0507:                int dl = 1 << mindl - rl;
0508:                return (ax + dl - 1) / dl;
0509:            }
0510:
0511:            /**
0512:             * Returns the vertical coordinate of the image origin, the top-left
0513:             * corner, in the canvas system, on the reference grid at the specified
0514:             * resolution level.
0515:             *
0516:             * <P>Note: Image resolution level indexes may differ from tile-component
0517:             * resolution index. They are indeed indexed starting from the lowest
0518:             * number of decomposition levels of each component of each tile.
0519:             *
0520:             * <P>Example: For an image (1 tile) with 2 components (component 0 having
0521:             * 2 decomposition levels and component 1 having 3 decomposition levels),
0522:             * the first (tile-) component has 3 resolution levels and the second one
0523:             * has 4 resolution levels, whereas the image has only 3 resolution levels
0524:             * available.
0525:             *
0526:             * @param rl The resolution level, from 0 to L.
0527:             *
0528:             * @return The vertical coordinate of the image origin in the canvas
0529:             * system, on the reference grid.
0530:             * */
0531:            public int getImgULY(int rl) {
0532:                int mindl = decSpec.dls.getMin();
0533:                if (rl > mindl) {
0534:                    throw new IllegalArgumentException(
0535:                            "Requested resolution level"
0536:                                    + " is not available for, at "
0537:                                    + "least, one tile-component");
0538:                }
0539:                // Retrieve number of decomposition levels corresponding to this
0540:                // resolution level
0541:                int dl = 1 << mindl - rl;
0542:                return (ay + dl - 1) / dl;
0543:            }
0544:
0545:            /**
0546:             * Returns the width in pixels of the specified tile-component for the
0547:             * given (tile-component) resolution level.
0548:             *
0549:             * @param t The tile index
0550:             *
0551:             * @param c The index of the component, from 0 to N-1.
0552:             *
0553:             * @param rl The resolution level, from 0 to L.
0554:             *
0555:             * @return The width in pixels of component <tt>c</tt> in tile <tt>t</tt>
0556:             * for resolution level <tt>rl</tt>.
0557:             * */
0558:            public final int getTileCompWidth(int t, int c, int rl) {
0559:                int tIdx = getTileIdx();
0560:                if (t != tIdx) {
0561:                    throw new Error(
0562:                            "Asking the tile-component width of a tile "
0563:                                    + "different  from the current one.");
0564:                }
0565:                // Calculate starting X of next tile X-wise at reference grid hi-res
0566:                int ntulx = (ctX < ntX - 1) ? px + (ctX + 1) * ntW : ax + imgW;
0567:                // Convert reference grid hi-res to component grid hi-res
0568:                ntulx = (ntulx + hd.getCompSubsX(c) - 1) / hd.getCompSubsX(c);
0569:                int dl = 1 << mdl[c] - rl;
0570:                // Starting X of current tile at component grid hi-res is culx[c]
0571:                // The difference at the rl level is the width
0572:                return (ntulx + dl - 1) / dl - (culx[c] + dl - 1) / dl;
0573:            }
0574:
0575:            /**
0576:             * Returns the height in pixels of the specified tile-component for the
0577:             * given (tile-component) resolution level.
0578:             *
0579:             * @param t The tile index.
0580:             *
0581:             * @param c The index of the component, from 0 to N-1.
0582:             *
0583:             * @param rl The resolution level, from 0 to L.
0584:             *
0585:             * @return The height in pixels of component <tt>c</tt> in the current
0586:             * tile.
0587:             * */
0588:            public final int getTileCompHeight(int t, int c, int rl) {
0589:                int tIdx = getTileIdx();
0590:                if (t != tIdx) {
0591:                    throw new Error(
0592:                            "Asking the tile-component width of a tile "
0593:                                    + "different  from the current one.");
0594:                }
0595:                // Calculate starting Y of next tile Y-wise at reference grid hi-res
0596:                int ntuly = (ctY < ntY - 1) ? py + (ctY + 1) * ntH : ay + imgH;
0597:                // Convert reference grid hi-res to component grid hi-res
0598:                ntuly = (ntuly + hd.getCompSubsY(c) - 1) / hd.getCompSubsY(c);
0599:                int dl = 1 << mdl[c] - rl; // Revert level indexation (0 is hi-res)
0600:                // Starting Y of current tile at component grid hi-res is culy[c]
0601:                // The difference at the rl level is the height
0602:                return (ntuly + dl - 1) / dl - (culy[c] + dl - 1) / dl;
0603:            }
0604:
0605:            /**
0606:             * Returns the width in pixels of the specified component in the overall
0607:             * image, for the given (component) resolution level.
0608:             *
0609:             * <P>Note: Component resolution level indexes may differ from
0610:             * tile-component resolution index. They are indeed indexed starting from
0611:             * the lowest number of decomposition levels of same component of each
0612:             * tile.
0613:             *
0614:             * <P>Example: For an image (2 tiles) with 1 component (tile 0 having 2
0615:             * decomposition levels and tile 1 having 3 decomposition levels), the
0616:             * first tile(-component) has 3 resolution levels and the second one has 4
0617:             * resolution levels, whereas the component has only 3 resolution levels
0618:             * available.
0619:             *
0620:             * @param c The index of the component, from 0 to N-1.
0621:             *
0622:             * @param rl The resolution level, from 0 to L.
0623:             *
0624:             * @return The width in pixels of component <tt>c</tt> in the overall
0625:             * image.
0626:             * */
0627:            public final int getCompImgWidth(int c, int rl) {
0628:                // indexation (0 is hi-res)
0629:                // Calculate image starting x at component hi-res grid
0630:                int sx = (ax + hd.getCompSubsX(c) - 1) / hd.getCompSubsX(c);
0631:                // Calculate image ending (excluding) x at component hi-res grid
0632:                int ex = (ax + imgW + hd.getCompSubsX(c) - 1)
0633:                        / hd.getCompSubsX(c);
0634:                int dl = 1 << decSpec.dls.getMinInComp(c) - rl;
0635:                // The difference at the rl level is the width
0636:                return (ex + dl - 1) / dl - (sx + dl - 1) / dl;
0637:            }
0638:
0639:            /**
0640:             * Returns the height in pixels of the specified component in the overall
0641:             * image, for the given (component) resolution level.
0642:             *
0643:             * <P>Note: Component resolution level indexes may differ from
0644:             * tile-component resolution index. They are indeed indexed starting from
0645:             * the lowest number of decomposition levels of same component of each
0646:             * tile.
0647:             *
0648:             * <P>Example: For an image (2 tiles) with 1 component (tile 0 having 2
0649:             * decomposition levels and tile 1 having 3 decomposition levels), the
0650:             * first tile(-component) has 3 resolution levels and the second one has 4
0651:             * resolution levels, whereas the component has only 3 resolution levels
0652:             * available.
0653:             *
0654:             * @param c The index of the component, from 0 to N-1.
0655:             *
0656:             * @param rl The resolution level, from 0 to L.
0657:             *
0658:             * @return The height in pixels of component <tt>c</tt> in the overall
0659:             * image.
0660:             * */
0661:            public final int getCompImgHeight(int c, int rl) {
0662:                // indexation (0 is hi-res)
0663:                // Calculate image starting x at component hi-res grid
0664:                int sy = (ay + hd.getCompSubsY(c) - 1) / hd.getCompSubsY(c);
0665:                // Calculate image ending (excluding) x at component hi-res grid
0666:                int ey = (ay + imgH + hd.getCompSubsY(c) - 1)
0667:                        / hd.getCompSubsY(c);
0668:                int dl = 1 << decSpec.dls.getMinInComp(c) - rl;
0669:                // The difference at the rl level is the width
0670:                return (ey + dl - 1) / dl - (sy + dl - 1) / dl;
0671:            }
0672:
0673:            /**
0674:             * Changes the current tile, given the new indexes. An
0675:             * IllegalArgumentException is thrown if the indexes do not correspond to
0676:             * a valid tile.
0677:             *
0678:             * @param x The horizontal indexes the tile.
0679:             *
0680:             * @param y The vertical indexes of the new tile.
0681:             * */
0682:            public abstract void setTile(int x, int y);
0683:
0684:            /**
0685:             * Advances to the next tile, in standard scan-line order (by rows then
0686:             * columns). An NoNextElementException is thrown if the current tile is
0687:             * the last one (i.e. there is no next tile).
0688:             * */
0689:            public abstract void nextTile();
0690:
0691:            /**
0692:             * Returns the indexes of the current tile. These are the horizontal and
0693:             * vertical indexes of the current tile.
0694:             *
0695:             * @param co If not null this object is used to return the information. If
0696:             * null a new one is created and returned.
0697:             *
0698:             * @return The current tile's indexes (vertical and horizontal indexes).
0699:             * */
0700:            public final Point getTile(Point co) {
0701:                if (co != null) {
0702:                    co.x = ctX;
0703:                    co.y = ctY;
0704:                    return co;
0705:                } else {
0706:                    return new Point(ctX, ctY);
0707:                }
0708:            }
0709:
0710:            /**
0711:             * Returns the index of the current tile, relative to a standard scan-line
0712:             * order.
0713:             *
0714:             * @return The current tile's index (starts at 0).
0715:             * */
0716:            public final int getTileIdx() {
0717:                return ctY * ntX + ctX;
0718:            }
0719:
0720:            /** 
0721:             * Returns the horizontal coordinate of the upper-left corner of the
0722:             * specified resolution in the given component of the current tile.
0723:             *  
0724:             * @param c The component index.
0725:             *  
0726:             * @param rl The resolution level index.
0727:             * */
0728:            public final int getResULX(int c, int rl) {
0729:                int dl = mdl[c] - rl;
0730:                if (dl < 0) {
0731:                    throw new IllegalArgumentException(
0732:                            "Requested resolution level"
0733:                                    + " is not available for, at "
0734:                                    + "least, one component in " + "tile: "
0735:                                    + ctX + "x" + ctY);
0736:                }
0737:                int tx0 = (int) Math.max(px + ctX * ntW, ax);
0738:                int tcx0 = (int) Math.ceil(tx0 / (double) getCompSubsX(c));
0739:                return (int) Math.ceil(tcx0 / (double) (1 << dl));
0740:            }
0741:
0742:            /**
0743:             * Returns the vertical coordinate of the upper-left corner of the
0744:             * specified component in the given component of the current tile.
0745:             *
0746:             * @param c The component index.
0747:             *
0748:             * @param rl The resolution level index.
0749:             * */
0750:            public final int getResULY(int c, int rl) {
0751:                int dl = mdl[c] - rl;
0752:                if (dl < 0) {
0753:                    throw new IllegalArgumentException(
0754:                            "Requested resolution level"
0755:                                    + " is not available for, at "
0756:                                    + "least, one component in " + "tile: "
0757:                                    + ctX + "x" + ctY);
0758:                }
0759:                int ty0 = (int) Math.max(py + ctY * ntH, ay);
0760:                int tcy0 = (int) Math.ceil(ty0 / (double) getCompSubsY(c));
0761:                return (int) Math.ceil(tcy0 / (double) (1 << dl));
0762:            }
0763:
0764:            /**
0765:             * Returns the number of tiles in the horizontal and vertical directions.
0766:             *
0767:             * @param co If not null this object is used to return the information. If
0768:             * null a new one is created and returned.
0769:             *
0770:             * @return The number of tiles in the horizontal (Point.x) and vertical
0771:             * (Point.y) directions.
0772:             * */
0773:            public final Point getNumTiles(Point co) {
0774:                if (co != null) {
0775:                    co.x = ntX;
0776:                    co.y = ntY;
0777:                    return co;
0778:                } else {
0779:                    return new Point(ntX, ntY);
0780:                }
0781:            }
0782:
0783:            /**
0784:             * Returns the total number of tiles in the image.
0785:             *
0786:             * @return The total number of tiles in the image.
0787:             * */
0788:            public final int getNumTiles() {
0789:                return ntX * ntY;
0790:            }
0791:
0792:            /**
0793:             * Returns the subband tree, for the specified tile-component. This method
0794:             * returns the root element of the subband tree structure, see Subband and
0795:             * SubbandSyn. The tree comprises all the available resolution levels.
0796:             *
0797:             * <p>Note: this method is not able to return subband tree for a tile
0798:             * different than the current one.</p>
0799:             *
0800:             * <p>The number of magnitude bits ('magBits' member variable) for each
0801:             * subband is not initialized.</p>
0802:             *
0803:             * @param t The tile index
0804:             *
0805:             * @param c The index of the component, from 0 to C-1.
0806:             *
0807:             * @return The root of the tree structure.
0808:             * */
0809:            public final SubbandSyn getSynSubbandTree(int t, int c) {
0810:                if (t != getTileIdx()) {
0811:                    throw new IllegalArgumentException(
0812:                            "Can not request subband"
0813:                                    + " tree of a different tile"
0814:                                    + " than the current one");
0815:                }
0816:                if (c < 0 || c >= nc) {
0817:                    throw new IllegalArgumentException(
0818:                            "Component index out of range");
0819:                }
0820:                return subbTrees[c];
0821:            }
0822:
0823:            /**
0824:             * Creates a bit stream reader of the correct type that works on the
0825:             * provided RandomAccessIO, with the special parameters from the parameter
0826:             * list.
0827:             *
0828:             * @param in The RandomAccessIO source from which to read the bit stream.
0829:             *
0830:             * @param hd Header of the codestream.
0831:             *
0832:             * @param j2krparam The parameters applicable to the
0833:             * bit stream read (other parameters may also be present).
0834:             *
0835:             * @param decSpec The decoder specifications
0836:             *
0837:             * @param cdstrInfo Whether or not to print information found in
0838:             * codestream. 
0839:             *
0840:             * @param hi Reference to the HeaderInfo instance.
0841:             *
0842:             * @exception IOException If an I/O error occurs while reading initial
0843:             * data from the bit stream.
0844:             * @exception IllegalArgumentException If an unrecognised bit stream
0845:             * reader option is present.
0846:             * */
0847:            public static BitstreamReaderAgent createInstance(
0848:                    RandomAccessIO in, HeaderDecoder hd,
0849:                    J2KImageReadParamJava j2krparam, DecoderSpecs decSpec,
0850:                    boolean cdstrInfo, HeaderInfo hi) throws IOException {
0851:                // Check header length
0852:                /*
0853:                 if (in.getPos() != hd.getTotalHeaderLength() + hd.initPos) {
0854:                 throw new IllegalArgumentException("Invalid header length");
0855:                 }
0856:                 */
0857:                return new FileBitstreamReaderAgent(hd, in, decSpec, j2krparam,
0858:                        cdstrInfo, hi);
0859:            }
0860:
0861:            /**
0862:             * Returns the parameters that are used in this class and implementing
0863:             * classes. It returns a 2D String array. Each of the 1D arrays is for a
0864:             * different option, and they have 3 elements. The first element is the
0865:             * option name, the second one is the synopsis and the third one is a long
0866:             * description of what the parameter is. The synopsis or description may
0867:             * be 'null', in which case it is assumed that there is no synopsis or
0868:             * description of the option, respectively. Null may be returned if no
0869:             * options are supported.
0870:             *
0871:             * @return the options name, their synopsis and their explanation, or null
0872:             * if no options are supported.
0873:             * */
0874:            public static String[][] getParameterInfo() {
0875:                return pinfo;
0876:            }
0877:
0878:            /**
0879:             * Returns the precinct partition width for the specified tile-component
0880:             * and (tile-component) resolution level.
0881:             *
0882:             * @param t the tile index
0883:             *
0884:             * @param c The index of the component (between 0 and N-1)
0885:             *
0886:             * @param rl The resolution level, from 0 to L.
0887:             *
0888:             * @return the precinct partition width for the specified component,
0889:             * resolution level and tile.
0890:             * */
0891:            public final int getPPX(int t, int c, int rl) {
0892:                return decSpec.pss.getPPX(t, c, rl);
0893:            }
0894:
0895:            /**
0896:             * Returns the precinct partition height for the specified tile-component
0897:             * and (tile-component) resolution level.
0898:             *
0899:             * @param t The tile index
0900:             *
0901:             * @param c The index of the component (between 0 and N-1)
0902:             *
0903:             * @param rl The resolution level, from 0 to L.
0904:             *
0905:             * @return The precinct partition height in the specified component, for
0906:             * the specified resolution level, for the current tile.
0907:             * */
0908:            public final int getPPY(int t, int c, int rl) {
0909:                return decSpec.pss.getPPY(t, c, rl);
0910:            }
0911:
0912:            /**
0913:             * Initialises subbands fields, such as code-blocks dimension and number
0914:             * of magnitude bits, in the subband tree. The nominal code-block
0915:             * width/height depends on the precincts dimensions if used. The way the
0916:             * number of magnitude bits is computed depends on the quantization type
0917:             * (reversible, derived, expounded).
0918:             *
0919:             * @param c The component index
0920:             *
0921:             * @param sb The subband tree to be initialised.
0922:             * */
0923:            protected void initSubbandsFields(int c, SubbandSyn sb) {
0924:                int t = getTileIdx();
0925:                int rl = sb.resLvl;
0926:                int cbw, cbh;
0927:
0928:                cbw = decSpec.cblks.getCBlkWidth(ModuleSpec.SPEC_TILE_COMP, t,
0929:                        c);
0930:                cbh = decSpec.cblks.getCBlkHeight(ModuleSpec.SPEC_TILE_COMP, t,
0931:                        c);
0932:
0933:                if (!sb.isNode) {
0934:                    if (hd.precinctPartitionUsed()) {
0935:                        // The precinct partition is used
0936:                        int ppxExp, ppyExp, cbwExp, cbhExp;
0937:
0938:                        // Get exponents
0939:                        ppxExp = MathUtil.log2(getPPX(t, c, rl));
0940:                        ppyExp = MathUtil.log2(getPPY(t, c, rl));
0941:                        cbwExp = MathUtil.log2(cbw);
0942:                        cbhExp = MathUtil.log2(cbh);
0943:
0944:                        switch (sb.resLvl) {
0945:                        case 0:
0946:                            sb.nomCBlkW = (cbwExp < ppxExp ? (1 << cbwExp)
0947:                                    : (1 << ppxExp));
0948:                            sb.nomCBlkH = (cbhExp < ppyExp ? (1 << cbhExp)
0949:                                    : (1 << ppyExp));
0950:                            break;
0951:
0952:                        default:
0953:                            sb.nomCBlkW = (cbwExp < ppxExp - 1 ? (1 << cbwExp)
0954:                                    : (1 << (ppxExp - 1)));
0955:                            sb.nomCBlkH = (cbhExp < ppyExp - 1 ? (1 << cbhExp)
0956:                                    : (1 << (ppyExp - 1)));
0957:                            break;
0958:                        }
0959:                    } else {
0960:                        sb.nomCBlkW = cbw;
0961:                        sb.nomCBlkH = cbh;
0962:                    }
0963:
0964:                    // Number of code-blocks
0965:                    if (sb.numCb == null)
0966:                        sb.numCb = new Point();
0967:                    if (sb.w == 0 || sb.h == 0) {
0968:                        sb.numCb.x = 0;
0969:                        sb.numCb.y = 0;
0970:                    } else {
0971:                        int cb0x = getCbULX();
0972:                        int cb0y = getCbULY();
0973:                        int tmp;
0974:
0975:                        // Projects code-block partition origin to subband. Since the
0976:                        // origin is always 0 or 1, it projects to the low-pass side
0977:                        // (throught the ceil operator) as itself (i.e. no change) and
0978:                        // to the high-pass side (through the floor operator) as 0,
0979:                        // always.
0980:                        int acb0x = cb0x;
0981:                        int acb0y = cb0y;
0982:
0983:                        switch (sb.sbandIdx) {
0984:                        case Subband.WT_ORIENT_LL:
0985:                            // No need to project since all low-pass => nothing to do
0986:                            break;
0987:                        case Subband.WT_ORIENT_HL:
0988:                            acb0x = 0;
0989:                            break;
0990:                        case Subband.WT_ORIENT_LH:
0991:                            acb0y = 0;
0992:                            break;
0993:                        case Subband.WT_ORIENT_HH:
0994:                            acb0x = 0;
0995:                            acb0y = 0;
0996:                            break;
0997:                        default:
0998:                            throw new Error("Internal JJ2000 error");
0999:                        }
1000:                        if (sb.ulcx - acb0x < 0 || sb.ulcy - acb0y < 0) {
1001:                            throw new IllegalArgumentException(
1002:                                    "Invalid code-blocks "
1003:                                            + "partition origin or "
1004:                                            + "image offset in the "
1005:                                            + "reference grid.");
1006:                        }
1007:
1008:                        // NOTE: when calculating "floor()" by integer division the
1009:                        // dividend and divisor must be positive, we ensure that by
1010:                        // adding the divisor to the dividend and then substracting 1
1011:                        // to the result of the division
1012:
1013:                        tmp = sb.ulcx - acb0x + sb.nomCBlkW;
1014:                        sb.numCb.x = (tmp + sb.w - 1) / sb.nomCBlkW
1015:                                - (tmp / sb.nomCBlkW - 1);
1016:
1017:                        tmp = sb.ulcy - acb0y + sb.nomCBlkH;
1018:                        sb.numCb.y = (tmp + sb.h - 1) / sb.nomCBlkH
1019:                                - (tmp / sb.nomCBlkH - 1);
1020:                    }
1021:
1022:                    if (derived[c]) {
1023:                        sb.magbits = gb[c]
1024:                                + (params[c].exp[0][0] - (mdl[c] - sb.level))
1025:                                - 1;
1026:                    } else {
1027:                        sb.magbits = gb[c]
1028:                                + params[c].exp[sb.resLvl][sb.sbandIdx] - 1;
1029:                    }
1030:                } else {
1031:                    initSubbandsFields(c, (SubbandSyn) sb.getLL());
1032:                    initSubbandsFields(c, (SubbandSyn) sb.getHL());
1033:                    initSubbandsFields(c, (SubbandSyn) sb.getLH());
1034:                    initSubbandsFields(c, (SubbandSyn) sb.getHH());
1035:                }
1036:            }
1037:
1038:            /**
1039:             * Returns the image resolution level to reconstruct from the
1040:             * codestream. This value cannot be computed before every main and tile
1041:             * headers are read.
1042:             *
1043:             * @return The image  resolution level
1044:             * */
1045:            public int getImgRes() {
1046:                return targetRes;
1047:            }
1048:
1049:            /**
1050:             * Return the target decoding rate in bits per pixel.
1051:             *
1052:             * @return Target decoding rate in bpp.
1053:             * */
1054:            public float getTargetRate() {
1055:                return trate;
1056:            }
1057:
1058:            /**
1059:             * Return the actual decoding rate in bits per pixel.
1060:             *
1061:             * @return Actual decoding rate in bpp.
1062:             * */
1063:            public float getActualRate() {
1064:                arate = anbytes * 8f / hd.getMaxCompImgWidth()
1065:                        / hd.getMaxCompImgHeight();
1066:                return arate;
1067:            }
1068:
1069:            /**
1070:             * Return the target number of read bytes.
1071:             *
1072:             * @return Target decoding rate in bytes.
1073:             * */
1074:            public int getTargetNbytes() {
1075:                return tnbytes;
1076:            }
1077:
1078:            /**
1079:             * Return the actual number of read bytes.
1080:             *
1081:             * @return Actual decoding rate in bytes.
1082:             * */
1083:            public int getActualNbytes() {
1084:                return anbytes;
1085:            }
1086:
1087:            /** Returns the horizontal offset of tile partition */
1088:            public int getTilePartULX() {
1089:                return hd.getTilingOrigin(null).x;
1090:            }
1091:
1092:            /** Returns the vertical offset of tile partition */
1093:            public int getTilePartULY() {
1094:                return hd.getTilingOrigin(null).y;
1095:            }
1096:
1097:            /** Returns the nominal tile width */
1098:            public int getNomTileWidth() {
1099:                return hd.getNomTileWidth();
1100:            }
1101:
1102:            /** Returns the nominal tile height */
1103:            public int getNomTileHeight() {
1104:                return hd.getNomTileHeight();
1105:            }
1106:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.