Source Code Cross Referenced for URI.java in  » 6.0-JDK-Modules » j2me » java » net » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » j2me » java.net 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * @(#)URI.java	1.41 06/10/10
0003:         *
0004:         * Copyright  1990-2006 Sun Microsystems, Inc. All Rights Reserved.
0005:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER
0006:         * 
0007:         * This program is free software; you can redistribute it and/or
0008:         * modify it under the terms of the GNU General Public License version
0009:         * 2 only, as published by the Free Software Foundation. 
0010:         * 
0011:         * This program is distributed in the hope that it will be useful, but
0012:         * WITHOUT ANY WARRANTY; without even the implied warranty of
0013:         * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
0014:         * General Public License version 2 for more details (a copy is
0015:         * included at /legal/license.txt). 
0016:         * 
0017:         * You should have received a copy of the GNU General Public License
0018:         * version 2 along with this work; if not, write to the Free Software
0019:         * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
0020:         * 02110-1301 USA 
0021:         * 
0022:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
0023:         * Clara, CA 95054 or visit www.sun.com if you need additional
0024:         * information or have any questions. 
0025:         */
0026:
0027:        package java.net;
0028:
0029:        import java.io.IOException;
0030:        import java.io.InvalidObjectException;
0031:        import java.io.ObjectInputStream;
0032:        import java.io.ObjectOutputStream;
0033:        import java.io.Serializable;
0034:        import java.io.UnsupportedEncodingException;
0035:        import sun.text.Normalizer;
0036:
0037:        import java.lang.Character; // for javadoc
0038:        import java.lang.NullPointerException; // for javadoc
0039:
0040:        /**
0041:         * Represents a Uniform Resource Identifier (URI) reference.
0042:         *
0043:         * <p> An instance of this class represents a URI reference as defined by <a
0044:         * href="http://www.ietf.org/rfc/rfc2396.txt""><i>RFC&nbsp;2396: Uniform
0045:         * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a
0046:         * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
0047:         * Literal IPv6 Addresses in URLs</i></a> and with the minor deviations noted
0048:         * below.  This class provides constructors for creating URI instances from
0049:         * their components or by parsing their string forms, methods for accessing the
0050:         * various components of an instance, and methods for normalizing, resolving,
0051:         * and relativizing URI instances.  Instances of this class are immutable.
0052:         *
0053:         *
0054:         * <h4> URI syntax and components </h4>
0055:         *
0056:         * At the highest level a URI reference (hereinafter simply "URI") in string
0057:         * form has the syntax
0058:         *
0059:         * <blockquote>
0060:         * [<i>scheme</i><tt><b>:</b></tt><i></i>]<i>scheme-specific-part</i>[<tt><b>#</b></tt><i>fragment</i>]
0061:         * </blockquote>
0062:         *
0063:         * where square brackets [...] delineate optional components and the characters
0064:         * <tt><b>:</b></tt> and <tt><b>#</b></tt> stand for themselves.
0065:         *
0066:         * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is
0067:         * said to be <i>relative</i>.  URIs are also classified according to whether
0068:         * they are <i>opaque</i> or <i>hierarchical</i>.
0069:         *
0070:         * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does
0071:         * not begin with a slash character (<tt>'/'</tt>).  Opaque URIs are not
0072:         * subject to further parsing.  Some examples of opaque URIs are:
0073:         *
0074:         * <blockquote><table cellpadding=0 cellspacing=0 summary="layout">
0075:         * <tr><td><tt>mailto:java-net@java.sun.com</tt><td></tr>
0076:         * <tr><td><tt>news:comp.lang.java</tt><td></tr>
0077:         * <tr><td><tt>urn:isbn:096139210x</tt></td></tr>
0078:         * </table></blockquote>
0079:         *
0080:         * <p> A <i>hierarchical</i> URI is either an absolute URI whose
0081:         * scheme-specific part begins with a slash character, or a relative URI, that
0082:         * is, a URI that does not specify a scheme.  Some examples of hierarchical
0083:         * URIs are:
0084:         *
0085:         * <blockquote>
0086:         * <tt>http://java.sun.com/j2se/1.3/</tt><br>
0087:         * <tt>docs/guide/collections/designfaq.html#28</tt></br>
0088:         * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java</tt></br>
0089:         * <tt>file:///~/calendar</tt>
0090:         * </blockquote>
0091:         *
0092:         * <p> A hierarchical URI is subject to further parsing according to the syntax
0093:         *
0094:         * <blockquote>
0095:         * [<i>scheme</i><tt><b>:</b></tt>][<tt><b>//</b></tt><i>authority</i>][<i>path</i>][<tt><b>?</b></tt><i>query</i>][<tt><b>#</b></tt><i>fragment</i>]
0096:         * </blockquote>
0097:         *
0098:         * where the characters <tt><b>:</b></tt>, <tt><b>/</b></tt>,
0099:         * <tt><b>?</b></tt>, and <tt><b>#</b></tt> stand for themselves.  The
0100:         * scheme-specific part of a hierarchical URI consists of the characters
0101:         * between the scheme and fragment components.
0102:         *
0103:         * <p> The authority component of a hierarchical URI is, if specified, either
0104:         * <i>server-based</i> or <i>registry-based</i>.  A server-based authority
0105:         * parses according to the familiar syntax
0106:         *
0107:         * <blockquote>
0108:         * [<i>user-info</i><tt><b>@</b></tt>]<i>host</i>[<tt><b>:</b></tt><i>port</i>]
0109:         * </blockquote>
0110:         *
0111:         * where the characters <tt><b>@</b></tt> and <tt><b>:</b></tt> stand for
0112:         * themselves.  Nearly all URI schemes currently in use are server-based.  An
0113:         * authority component that does not parse in this way is considered to be
0114:         * registry-based.
0115:         *
0116:         * <p> The path component of a hierarchical URI is itself said to be absolute
0117:         * if it begins with a slash character (<tt>'/'</tt>); otherwise it is
0118:         * relative.  The path of a hierarchical URI that is either absolute or
0119:         * specifies an authority is always absolute.
0120:         *
0121:         * <p> All told, then, a URI instance has the following nine components:
0122:         *
0123:         * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment">
0124:         * <tr><th><i>Component</i></th><th><i>Type</i></th></tr>
0125:         * <tr><td>scheme</td><td><tt>String</tt></td></tr>
0126:         * <tr><td>scheme-specific-part&nbsp;&nbsp;&nbsp;&nbsp;</td><td><tt>String</tt></td></tr>
0127:         * <tr><td>authority</td><td><tt>String</tt></td></tr>
0128:         * <tr><td>user-info</td><td><tt>String</tt></td></tr>
0129:         * <tr><td>host</td><td><tt>String</tt></td></tr>
0130:         * <tr><td>port</td><td><tt>int</tt></td></tr>
0131:         * <tr><td>path</td><td><tt>String</tt></td></tr>
0132:         * <tr><td>query</td><td><tt>String</tt></td></tr>
0133:         * <tr><td>fragment</td><td><tt>String</tt></td></tr>
0134:         * </table></blockquote>
0135:         *
0136:         * In a given instance any particular component is either <i>undefined</i> or
0137:         * <i>defined</i> with a distinct value.  Undefined string components are
0138:         * represented by <tt>null</tt>, while undefined integer components are
0139:         * represented by <tt>-1</tt>.  A string component may be defined to have the
0140:         * empty string as its value; this is not equivalent to that component being
0141:         * undefined.
0142:         *
0143:         * <p> Whether a particular component is or is not defined in an instance
0144:         * depends upon the type of the URI being represented.  An absolute URI has a
0145:         * scheme component.  An opaque URI has a scheme, a scheme-specific part, and
0146:         * possibly a fragment, but has no other components.  A hierarchical URI always
0147:         * has a path (though it may be empty) and a scheme-specific-part (which at
0148:         * least contains the path), and may have any of the other components.  If the
0149:         * authority component is present and is server-based then the host component
0150:         * will be defined and the user-information and port components may be defined.
0151:         *
0152:         *
0153:         * <h4> Operations on URI instances </h4>
0154:         *
0155:         * The key operations supported by this class are those of
0156:         * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>.
0157:         *
0158:         * <p> <i>Normalization</i> is the process of removing unnecessary <tt>"."</tt>
0159:         * and <tt>".."</tt> segments from the path component of a hierarchical URI.
0160:         * Each <tt>"."</tt> segment is simply removed.  A <tt>".."</tt> segment is
0161:         * removed only if it is preceded by a non-<tt>".."</tt> segment.
0162:         * Normalization has no effect upon opaque URIs.
0163:         *
0164:         * <p> <i>Resolution</i> is the process of resolving one URI against another,
0165:         * <i>base</i> URI.  The resulting URI is constructed from components of both
0166:         * URIs in the manner specified by RFC&nbsp;2396, taking components from the
0167:         * base URI for those not specified in the original.  For hierarchical URIs,
0168:         * the path of the original is resolved against the path of the base and then
0169:         * normalized.  The result, for example, of resolving
0170:         *
0171:         * <blockquote>
0172:         * <tt>docs/guide/collections/designfaq.html#28&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt>(1)
0173:         * </blockquote>
0174:         *
0175:         * against the base URI <tt>http://java.sun.com/j2se/1.3/</tt> is the result
0176:         * URI
0177:         *
0178:         * <blockquote>
0179:         * <tt>http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28</tt>
0180:         * </blockquote>
0181:         *
0182:         * Resolving the relative URI
0183:         *
0184:         * <blockquote>
0185:         * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java&nbsp;&nbsp;&nbsp;&nbsp;</tt>(2)
0186:         * </blockquote>
0187:         *
0188:         * against this result yields, in turn,
0189:         *
0190:         * <blockquote>
0191:         * <tt>http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java</tt>
0192:         * </blockquote>
0193:         *
0194:         * Resolution of both absolute and relative URIs, and of both absolute and
0195:         * relative paths in the case of hierarchical URIs, is supported.  Resolving
0196:         * the URI <tt>file:///~calendar</tt> against any other URI simply yields the
0197:         * original URI, since it is absolute.  Resolving the relative URI (2) above
0198:         * against the relative base URI (1) yields the normalized, but still relative,
0199:         * URI
0200:         *
0201:         * <blockquote>
0202:         * <tt>demo/jfc/SwingSet2/src/SwingSet2.java</tt>
0203:         * </blockquote>
0204:         *
0205:         * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any
0206:         * two normalized URIs <i>u</i> and&nbsp;<i>v</i>,
0207:         *
0208:         * <blockquote>
0209:         *   <i>u</i><tt>.relativize(</tt><i>u</i><tt>.resolve(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt>&nbsp;&nbsp;and<br>
0210:         *   <i>u</i><tt>.resolve(</tt><i>u</i><tt>.relativize(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt>&nbsp;&nbsp;.<br>
0211:         * </blockquote>
0212:         *
0213:         * This operation is often useful when constructing a document containing URIs
0214:         * that must be made relative to the base URI of the document wherever
0215:         * possible.  For example, relativizing the URI
0216:         *
0217:         * <blockquote>
0218:         * <tt>http://java.sun.com/j2se/1.3/docs/guide/index.html</tt>
0219:         * </blockquote>
0220:         *
0221:         * against the base URI
0222:         *
0223:         * <blockquote>
0224:         * <tt>http://java.sun.com/j2se/1.3</tt>
0225:         * </blockquote>
0226:         *
0227:         * yields the relative URI <tt>docs/guide/index.html</tt>.
0228:         *
0229:         *
0230:         * <h4> Character categories </h4>
0231:         *
0232:         * RFC&nbsp;2396 specifies precisely which characters are permitted in the
0233:         * various components of a URI reference.  The following categories, most of
0234:         * which are taken from that specification, are used below to describe these
0235:         * constraints:
0236:         *
0237:         * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other">
0238:         *   <tr><th valign=top><i>alpha</i></th>
0239:         *       <td>The US-ASCII alphabetic characters,
0240:         * 	  <tt>'A'</tt>&nbsp;through&nbsp;<tt>'Z'</tt>
0241:         * 	  and <tt>'a'</tt>&nbsp;through&nbsp;<tt>'z'</tt></td></tr>
0242:         *   <tr><th valign=top><i>digit</i></th>
0243:         *       <td>The US-ASCII decimal digit characters,
0244:         *       <tt>'0'</tt>&nbsp;through&nbsp;<tt>'9'</tt></td></tr>
0245:         *   <tr><th valign=top><i>alphanum</i></th>
0246:         *       <td>All <i>alpha</i> and <i>digit</i> characters</td></tr>
0247:         *   <tr><th valign=top><i>unreserved</i>&nbsp;&nbsp;&nbsp;&nbsp;</th>
0248:         *       <td>All <i>alphanum</i> characters together with those in the string
0249:         * 	  <tt>"_-!.~'()*"</tt></td></tr>
0250:         *   <tr><th valign=top><i>punct</i></th>
0251:         *       <td>The characters in the string <tt>",;:$&+="</tt></td></tr>
0252:         *   <tr><th valign=top><i>reserved</i></th>
0253:         *       <td>All <i>punct</i> characters together with those in the string
0254:         * 	  <tt>"?/[]@"</tt></td></tr>
0255:         *   <tr><th valign=top><i>escaped</i></th>
0256:         *       <td>Escaped octets, that is, triplets consisting of the percent
0257:         *           character (<tt>'%'</tt>) followed by two hexadecimal digits
0258:         *           (<tt>'0'</tt>-<tt>'9'</tt>, <tt>'A'</tt>-<tt>'F'</tt>, and
0259:         *           <tt>'a'</tt>-<tt>'f'</tt>)</td></tr>
0260:         *   <tr><th valign=top><i>other</i></th>
0261:         *       <td>The Unicode characters that are not in the US-ASCII character set,
0262:         *           are not control characters (according to the {@link
0263:         *           java.lang.Character#isISOControl(char) Character.isISOControl}
0264:         * 	     method), and are not space characters (according to the {@link
0265:         * 	     java.lang.Character#isSpaceChar(char) Character.isSpaceChar}
0266:         * 	     method)&nbsp;&nbsp;(<b><i>Deviation from RFC 2396</b>, which is
0267:         * 	     limited to US-ASCII)</td></tr>
0268:         * </table></blockquote>
0269:         *
0270:         * <p><a name="legal-chars"> The set of all legal URI characters consists of
0271:         * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i>
0272:         * characters.
0273:         *
0274:         *
0275:         * <h4> Escaped octets, quotation, encoding, and decoding </h4>
0276:         *
0277:         * RFC 2396 allows escaped octets to appear in the user-info, path, query, and
0278:         * fragment components.  Escaping serves two purposes in URIs:
0279:         *
0280:         * <ul>
0281:         *
0282:         *   <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to
0283:         *   conform strictly to RFC&nbsp;2396 by not containing any <i>other</i>
0284:         *   characters.  </p></li>
0285:         *
0286:         *   <li><p> To <i>quote</i> characters that are otherwise illegal in a
0287:         *   component.  The user-info, path, query, and fragment components differ
0288:         *   slightly in terms of which characters are considered legal and illegal.
0289:         *   </p></li>
0290:         *
0291:         * </ul>
0292:         *
0293:         * These purposes are served in this class by three related operations:
0294:         *
0295:         * <ul>
0296:         *
0297:         *   <li><p><a name="encode"> A character is <i>encoded</i> by replacing it
0298:         *   with the sequence of escaped octets that represent that character in the
0299:         *   UTF-8 character set.  The Euro currency symbol (<tt>'&#92;u20AC'</tt>),
0300:         *   for example, is encoded as <tt>"%E2%82%AC"</tt>.  <i>(<b>Deviation from
0301:         *   RFC&nbsp;2396</b>, which does not specify any particular character
0302:         *   set.)</i> </li></p>
0303:         *
0304:         *   <li><p><a name="quote"> An illegal character is <i>quoted</i> simply by
0305:         *   encoding it.  The space character, for example, is quoted by replacing it
0306:         *   with <tt>"%20"</tt>.  UTF-8 contains US-ASCII, hence for US-ASCII
0307:         *   characters this transformation has exactly the effect required by
0308:         *   RFC&nbsp;2396.
0309:         *
0310:         *   <li><p><a name="decode"> A sequence of escaped octets is <i>decoded</i> by
0311:         *   replacing it with the sequence of characters that it represents in the
0312:         *   UTF-8 character set.  UTF-8 contains US-ASCII, hence decoding has the
0313:         *   effect of de-quoting any quoted US-ASCII characters as well as that of
0314:         *   decoding any encoded non-US-ASCII characters.  If a <a
0315:         *   href="http://java.sun.com/j2se/1.4.2/docs/api/java/nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs
0316:         *   when decoding the escaped octets then the erroneous octets are replaced by
0317:         *   <tt>'&#92;uFFFD'</tt>, the Unicode replacement character.  </p></li>
0318:         *
0319:         * </ul>
0320:         *
0321:         * These operations are exposed in the constructors and methods of this class
0322:         * as follows:
0323:         *
0324:         * <ul>
0325:         *
0326:         *   <li><p> The {@link #URI(java.lang.String) </code>single-argument
0327:         *   constructor<code>} requires any illegal characters in its argument to be
0328:         *   quoted and preserves any escaped octets and <i>other</i> characters that
0329:         *   are present.  </p></li>
0330:         *
0331:         *   <li><p> The {@link
0332:         *   #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String)
0333:         *   </code>multi-argument constructors<code>} quote illegal characters as
0334:         *   required by the components in which they appear.  The percent character
0335:         *   (<tt>'%'</tt>) is always quoted by these constructors.  Any <i>other</i>
0336:         *   characters are preserved.  </p></li>
0337:         *
0338:         *   <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath()
0339:         *   getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment()
0340:         *   getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link
0341:         *   #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the
0342:         *   values of their corresponding components in raw form, without interpreting
0343:         *   any escaped octets.  The strings returned by these methods may contain
0344:         *   both escaped octets and <i>other</i> characters, and will not contain any
0345:         *   illegal characters.  </p></li>
0346:         *
0347:         *   <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath()
0348:         *   getPath}, {@link #getQuery() getQuery}, {@link #getFragment()
0349:         *   getFragment}, {@link #getAuthority() getAuthority}, and {@link
0350:         *   #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped
0351:         *   octets in their corresponding components.  The strings returned by these
0352:         *   methods may contain both <i>other</i> characters and illegal characters,
0353:         *   and will not contain any escaped octets.  </p></li>
0354:         *
0355:         *   <li><p> The {@link #toString() toString} method returns a URI string with
0356:         *   all necessary quotation but which may contain <i>other</i> characters.
0357:         *   </p></li>
0358:         *
0359:         *   <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully
0360:         *   quoted and encoded URI string that does not contain any <i>other</i>
0361:         *   characters.  </p></li>
0362:         *
0363:         * </ul>
0364:         *
0365:         *
0366:         * <h4> Identities </h4>
0367:         *
0368:         * For any URI <i>u</i>, it is always the case that
0369:         *
0370:         * <blockquote>
0371:         * <tt>new URI(</tt><i>u</i><tt>.toString()).equals(</tt><i>u</i><tt>)</tt>&nbsp;.
0372:         * </blockquote>
0373:         *
0374:         * For any URI <i>u</i> that does not contain redundant syntax such as two
0375:         * slashes before an empty authority (as in <tt>file:///tmp/</tt>&nbsp;) or a
0376:         * colon following a host name but no port (as in
0377:         * <tt>http://java.sun.com:</tt>&nbsp;), and that does not encode characters
0378:         * except those that must be quoted, the following identities also hold:
0379:         *
0380:         * <blockquote>
0381:         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0382:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getSchemeSpecificPart(),<br>
0383:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0384:         * .equals(</tt><i>u</i><tt>)</tt>
0385:         * </blockquote>
0386:         *
0387:         * in all cases,
0388:         *
0389:         * <blockquote>
0390:         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0391:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getUserInfo(),&nbsp;</tt><i>u</i><tt>.getAuthority(),<br>
0392:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getPath(),&nbsp;</tt><i>u</i><tt>.getQuery(),<br>
0393:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0394:         * .equals(</tt><i>u</i><tt>)</tt>
0395:         * </blockquote>
0396:         *
0397:         * if <i>u</i> is hierarchical, and
0398:         *
0399:         * <blockquote>
0400:         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0401:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getUserInfo(),&nbsp;</tt><i>u</i><tt>.getHost(),&nbsp;</tt><i>u</i><tt>.getPort(),<br>
0402:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getPath(),&nbsp;</tt><i>u</i><tt>.getQuery(),<br>
0403:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0404:         * .equals(</tt><i>u</i><tt>)</tt>
0405:         * </blockquote>
0406:         *
0407:         * if <i>u</i> is hierarchical and has either no authority or a server-based
0408:         * authority.
0409:         *
0410:         *
0411:         * <h4> URIs, URLs, and URNs </h4>
0412:         *
0413:         * A URI is a uniform resource <i>identifier</i> while a URL is a uniform
0414:         * resource <i>locator</i>.  Hence every URL is a URI, abstractly speaking, but
0415:         * not every URI is a URL.  This is because there is another subcategory of
0416:         * URIs, uniform resource <i>names</i> (URNs), which name resources but do not
0417:         * specify how to locate them.  The <tt>mailto</tt>, <tt>news</tt>, and
0418:         * <tt>isbn</tt> URIs shown above are examples of URNs.
0419:         *
0420:         * <p> The conceptual distinction between URIs and URLs is reflected in the
0421:         * differences between this class and the {@link URL} class.
0422:         *
0423:         * <p> An instance of this class represents a URI reference in the syntactic
0424:         * sense defined by RFC&nbsp;2396.  A URI may be either absolute or relative.
0425:         * A URI string is parsed according to the generic syntax without regard to the
0426:         * scheme, if any, that it specifies.  No lookup of the host, if any, is
0427:         * performed, and no scheme-dependent stream handler is constructed.  Equality,
0428:         * hashing, and comparison are defined strictly in terms of the character
0429:         * content of the instance.  In other words, a URI instance is little more than
0430:         * a structured string that supports the syntactic, scheme-independent
0431:         * operations of comparison, normalization, resolution, and relativization.
0432:         *
0433:         * <p> An instance of the {@link URL} class, by contrast, represents the
0434:         * syntactic components of a URL together with some of the information required
0435:         * to access the resource that it describes.  A URL must be absolute, that is,
0436:         * it must always specify a scheme.  A URL string is parsed according to its
0437:         * scheme.  A stream handler is always established for a URL, and in fact it is
0438:         * impossible to create a URL instance for a scheme for which no handler is
0439:         * available.  Equality and hashing depend upon both the scheme and the
0440:         * Internet address of the host, if any; comparison is not defined.  In other
0441:         * words, a URL is a structured string that supports the syntactic operation of
0442:         * resolution as well as the network I/O operations of looking up the host and
0443:         * opening a connection to the specified resource.
0444:         *
0445:         *
0446:         * @version 1.41, 06/10/10
0447:         * @author Mark Reinhold
0448:         * @since 1.4
0449:         *
0450:         * @see <a href="http://ietf.org/rfc/rfc2279.txt"><i>RFC&nbsp;2279: UTF-8, a
0451:         * transformation format of ISO 10646</i></a>, <br><a
0452:         * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6 Addressing
0453:         * Architecture</i></a>, <br><a
0454:         * href="http://www.ietf.org/rfc/rfc2396.txt""><i>RFC&nbsp;2396: Uniform
0455:         * Resource Identifiers (URI): Generic Syntax</i></a>, <br><a
0456:         * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
0457:         * Literal IPv6 Addresses in URLs</i></a>, <br><a
0458:         * href="URISyntaxException.html">URISyntaxException</a>
0459:         */
0460:
0461:        public final class URI implements  Comparable, Serializable {
0462:
0463:            // Note: Comments containing the word "ASSERT" indicate places where a
0464:            // throw of an InternalError should be replaced by an appropriate assertion
0465:            // statement once asserts are enabled in the build.
0466:
0467:            static final long serialVersionUID = -6052424284110960213L;
0468:
0469:            // -- Properties and components of this instance --
0470:
0471:            // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>]
0472:            private transient String scheme; // null ==> relative URI
0473:            private transient String fragment;
0474:
0475:            // Hierarchical URI components: [//<authority>]<path>[?<query>]
0476:            private transient String authority; // Registry or server
0477:
0478:            // Server-based authority: [<userInfo>@]<host>[:<port>]
0479:            private transient String userInfo;
0480:            private transient String host; // null ==> registry-based
0481:            private transient int port = -1; // -1 ==> undefined
0482:
0483:            // Remaining components of hierarchical URIs
0484:            private transient String path; // null ==> opaque
0485:            private transient String query;
0486:
0487:            // The remaining fields may be computed on demand
0488:
0489:            private volatile transient String schemeSpecificPart;
0490:            private volatile transient int hash; // Zero ==> undefined
0491:
0492:            private volatile transient String decodedUserInfo = null;
0493:            private volatile transient String decodedAuthority = null;
0494:            private volatile transient String decodedPath = null;
0495:            private volatile transient String decodedQuery = null;
0496:            private volatile transient String decodedFragment = null;
0497:            private volatile transient String decodedSchemeSpecificPart = null;
0498:
0499:            /**
0500:             * The string form of this URI.
0501:             *
0502:             * @serial
0503:             */
0504:            private volatile String string; // The only serializable field
0505:
0506:            // -- Constructors and factories --
0507:
0508:            private URI() {
0509:            } // Used internally
0510:
0511:            /**
0512:             * Constructs a URI by parsing the given string.
0513:             *
0514:             * <p> This constructor parses the given string exactly as specified by the
0515:             * grammar in <a
0516:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0517:             * Appendix&nbsp;A, <b><i>except for the following deviations:</i></b> </p>
0518:             *
0519:             * <ul type=disc>
0520:             *
0521:             *   <li><p> An empty authority component is permitted as long as it is
0522:             *   followed by a non-empty path, a query component, or a fragment
0523:             *   component.  This allows the parsing of URIs such as
0524:             *   <tt>"file:///foo/bar"</tt>, which seems to be the intent of
0525:             *   RFC&nbsp;2396 although the grammar does not permit it.  If the
0526:             *   authority component is empty then the user-information, host, and port
0527:             *   components are undefined. </p></li>
0528:             *
0529:             *   <li><p> Empty relative paths are permitted; this seems to be the
0530:             *   intent of RFC&nbsp;2396 although the grammar does not permit it.  The
0531:             *   primary consequence of this deviation is that a standalone fragment
0532:             *   such as <tt>"#foo"</tt> parses as a relative URI with an empty path
0533:             *   and the given fragment, and can be usefully <a
0534:             *   href="#resolve-frag">resolved</a> against a base URI.
0535:             *
0536:             *   <li><p> IPv4 addresses in host components are parsed rigorously, as
0537:             *   specified by <a
0538:             *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>: Each
0539:             *   element of a dotted-quad address must contain no more than three
0540:             *   decimal digits.  Each element is further constrained to have a value
0541:             *   no greater than 255. </p></li>
0542:             *
0543:             *   <li> <p> Hostnames in host components that comprise only a single
0544:             *   domain label are permitted to start with an <i>alphanum</i> 
0545:             *   character. This seems to be the intent of <a
0546:             *   href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
0547:             *   section&nbsp;3.2.2 although the grammar does not permit it. The
0548:             *   consequence of this deviation is that the authority component of a
0549:             *   hierarchical URI such as <tt>s://123</tt>, will parse as a server-based 
0550:             *   authority. </p></li>
0551:             *
0552:             *   <li><p> IPv6 addresses are permitted for the host component.  An IPv6
0553:             *   address must be enclosed in square brackets (<tt>'['</tt> and
0554:             *   <tt>']'</tt>) as specified by <a
0555:             *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>.  The
0556:             *   IPv6 address itself must parse according to <a
0557:             *   href="http://www.ietf.org/rfc/rfc2373.txt">RFC&nbsp;2373</a>.  IPv6
0558:             *   addresses are further constrained to describe no more than sixteen
0559:             *   bytes of address information, a constraint implicit in RFC&nbsp;2373
0560:             *   but not expressible in the grammar. </p></li>
0561:             *
0562:             *   <li><p> Characters in the <i>other</i> category are permitted wherever
0563:             *   RFC&nbsp;2396 permits <i>escaped</i> octets, that is, in the
0564:             *   user-information, path, query, and fragment components, as well as in
0565:             *   the authority component if the authority is registry-based.  This
0566:             *   allows URIs to contain Unicode characters beyond those in the US-ASCII
0567:             *   character set. </p></li>
0568:             *
0569:             * </ul>
0570:             *
0571:             * @param  str   The string to be parsed into a URI
0572:             *
0573:             * @throws  NullPointerException
0574:             *          If <tt>str</tt> is <tt>null</tt>
0575:             *
0576:             * @throws  URISyntaxException
0577:             *          If the given string violates RFC&nbsp;2396, as augmented
0578:             *          by the above deviations
0579:             */
0580:            public URI(String str) throws URISyntaxException {
0581:                new Parser(str).parse(false);
0582:            }
0583:
0584:            /**
0585:             * Constructs a hierarchical URI from the given components.
0586:             *
0587:             * <p> If a scheme is given then the path, if also given, must either be
0588:             * empty or begin with a slash character (<tt>'/'</tt>).  Otherwise a
0589:             * component of the new URI may be left undefined by passing <tt>null</tt>
0590:             * for the corresponding parameter or, in the case of the <tt>port</tt>
0591:             * parameter, by passing <tt>-1</tt>.
0592:             *
0593:             * <p> This constructor first builds a URI string from the given components
0594:             * according to the rules specified in <a
0595:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0596:             * section&nbsp;5.2, step&nbsp;7: </p>
0597:             *
0598:             * <ol>
0599:             *
0600:             *   <li><p> Initially, the result string is empty. </p></li>
0601:             *
0602:             *   <li><p> If a scheme is given then it is appended to the result,
0603:             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0604:             *
0605:             *   <li><p> If user information, a host, or a port are given then the
0606:             *   string <tt>"//"</tt> is appended.  </p></li>
0607:             *
0608:             *   <li><p> If user information is given then it is appended, followed by
0609:             *   a commercial-at character (<tt>'@'</tt>).  Any character not in the
0610:             *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0611:             *   categories is <a href="#quote">quoted</a>.  </p></li>
0612:             *
0613:             *   <li><p> If a host is given then it is appended.  If the host is a
0614:             *   literal IPv6 address but is not enclosed in square brackets
0615:             *   (<tt>'['</tt> and <tt>']'</tt>) then the square brackets are added.
0616:             *   </p></li>
0617:             *
0618:             *   <li><p> If a port number is given then a colon character
0619:             *   (<tt>':'</tt>) is appended, followed by the port number in decimal.
0620:             *   </p></li>
0621:             *
0622:             *   <li><p> If a path is given then it is appended.  Any character not in
0623:             *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0624:             *   categories, and not equal to the slash character (<tt>'/'</tt>) or the
0625:             *   commercial-at character (<tt>'@'</tt>), is quoted.  </p></li>
0626:             *
0627:             *   <li><p> If a query is given then a question-mark character
0628:             *   (<tt>'?'</tt>) is appended, followed by the query.  Any character that
0629:             *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
0630:             *   </p></li>
0631:             *
0632:             *   <li><p> Finally, if a fragment is given then a hash character
0633:             *   (<tt>'#'</tt>) is appended, followed by the fragment.  Any character
0634:             *   that is not a legal URI character is quoted.  </p></li>
0635:             *
0636:             * </ol>
0637:             *
0638:             * <p> The resulting URI string is then parsed as if by invoking the {@link
0639:             * #URI(String)} constructor and then invoking the {@link
0640:             * #parseServerAuthority()} method upon the result; this may cause a {@link
0641:             * URISyntaxException} to be thrown.  </p>
0642:             *
0643:             * @param   scheme    Scheme name
0644:             * @param   userInfo  User name and authorization information
0645:             * @param   host      Host name
0646:             * @param   port      Port number
0647:             * @param   path      Path
0648:             * @param   query     Query
0649:             * @param   fragment  Fragment
0650:             *
0651:             * @throws URISyntaxException
0652:             *         If both a scheme and a path are given but the path is relative,
0653:             *         if the URI string constructed from the given components violates
0654:             *         RFC&nbsp;2396, or if the authority component of the string is
0655:             *         present but cannot be parsed as a server-based authority
0656:             */
0657:            public URI(String scheme, String userInfo, String host, int port,
0658:                    String path, String query, String fragment)
0659:                    throws URISyntaxException {
0660:                String s = toString(scheme, null, null, userInfo, host, port,
0661:                        path, query, fragment);
0662:                checkPath(s, scheme, path);
0663:                new Parser(s).parse(true);
0664:            }
0665:
0666:            /**
0667:             * Constructs a hierarchical URI from the given components.
0668:             *
0669:             * <p> If a scheme is given then the path, if also given, must either be
0670:             * empty or begin with a slash character (<tt>'/'</tt>).  Otherwise a
0671:             * component of the new URI may be left undefined by passing <tt>null</tt>
0672:             * for the corresponding parameter.
0673:             *
0674:             * <p> This constructor first builds a URI string from the given components
0675:             * according to the rules specified in <a
0676:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0677:             * section&nbsp;5.2, step&nbsp;7: </p>
0678:             *
0679:             * <ol>
0680:             *
0681:             *   <li><p> Initially, the result string is empty.  </p></li>
0682:             *
0683:             *   <li><p> If a scheme is given then it is appended to the result,
0684:             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0685:             *
0686:             *   <li><p> If an authority is given then the string <tt>"//"</tt> is
0687:             *   appended, followed by the authority.  If the authority contains a
0688:             *   literal IPv6 address then the address must be enclosed in square
0689:             *   brackets (<tt>'['</tt> and <tt>']'</tt>).  Any character not in the
0690:             *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0691:             *   categories, and not equal to the commercial-at character
0692:             *   (<tt>'@'</tt>), is <a href="#quote">quoted</a>.  </p></li>
0693:             *
0694:             *   <li><p> If a path is given then it is appended.  Any character not in
0695:             *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0696:             *   categories, and not equal to the slash character (<tt>'/'</tt>) or the
0697:             *   commercial-at character (<tt>'@'</tt>), is quoted.  </p></li>
0698:             *
0699:             *   <li><p> If a query is given then a question-mark character
0700:             *   (<tt>'?'</tt>) is appended, followed by the query.  Any character that
0701:             *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
0702:             *   </p></li>
0703:             *
0704:             *   <li><p> Finally, if a fragment is given then a hash character
0705:             *   (<tt>'#'</tt>) is appended, followed by the fragment.  Any character
0706:             *   that is not a legal URI character is quoted.  </p></li>
0707:             *
0708:             * </ol>
0709:             *
0710:             * <p> The resulting URI string is then parsed as if by invoking the {@link
0711:             * #URI(String)} constructor and then invoking the {@link
0712:             * #parseServerAuthority()} method upon the result; this may cause a {@link
0713:             * URISyntaxException} to be thrown.  </p>
0714:             *
0715:             * @param   scheme     Scheme name
0716:             * @param   authority  Authority
0717:             * @param   path       Path
0718:             * @param   query      Query
0719:             * @param   fragment   Fragment
0720:             *
0721:             * @throws URISyntaxException
0722:             *         If both a scheme and a path are given but the path is relative,
0723:             *         if the URI string constructed from the given components violates
0724:             *         RFC&nbsp;2396, or if the authority component of the string is
0725:             *         present but cannot be parsed as a server-based authority
0726:             */
0727:            public URI(String scheme, String authority, String path,
0728:                    String query, String fragment) throws URISyntaxException {
0729:                String s = toString(scheme, null, authority, null, null, -1,
0730:                        path, query, fragment);
0731:                checkPath(s, scheme, path);
0732:                new Parser(s).parse(false);
0733:            }
0734:
0735:            /**
0736:             * Constructs a hierarchical URI from the given components.
0737:             *
0738:             * <p> A component may be left undefined by passing <tt>null</tt>.
0739:             *
0740:             * <p> This convenience constructor works as if by invoking the
0741:             * seven-argument constructor as follows:
0742:             *
0743:             * <blockquote><tt>
0744:             * new&nbsp;{@link #URI(String, String, String, int, String, String, String)
0745:             * URI}(scheme,&nbsp;null,&nbsp;host,&nbsp;-1,&nbsp;path,&nbsp;null,&nbsp;fragment);
0746:             * </tt></blockquote>
0747:             *
0748:             * @param   scheme    Scheme name
0749:             * @param   host      Host name
0750:             * @param   path      Path
0751:             * @param   fragment  Fragment
0752:             *
0753:             * @throws  URISyntaxException
0754:             *          If the URI string constructed from the given components
0755:             *          violates RFC&nbsp;2396
0756:             */
0757:            public URI(String scheme, String host, String path, String fragment)
0758:                    throws URISyntaxException {
0759:                this (scheme, null, host, -1, path, null, fragment);
0760:            }
0761:
0762:            /**
0763:             * Constructs a URI from the given components.
0764:             *
0765:             * <p> A component may be left undefined by passing <tt>null</tt>.
0766:             *
0767:             * <p> This constructor first builds a URI in string form using the given
0768:             * components as follows:  </p>
0769:             *
0770:             * <ol>
0771:             *
0772:             *   <li><p> Initially, the result string is empty.  </p></li>
0773:             *
0774:             *   <li><p> If a scheme is given then it is appended to the result,
0775:             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0776:             *
0777:             *   <li><p> If a scheme-specific part is given then it is appended.  Any
0778:             *   character that is not a <a href="#legal-chars">legal URI character</a>
0779:             *   is <a href="#quote">quoted</a>.  </p></li>
0780:             *
0781:             *   <li><p> Finally, if a fragment is given then a hash character
0782:             *   (<tt>'#'</tt>) is appended to the string, followed by the fragment.
0783:             *   Any character that is not a legal URI character is quoted.  </p></li>
0784:             *
0785:             * </ol>
0786:             *
0787:             * <p> The resulting URI string is then parsed in order to create the new
0788:             * URI instance as if by invoking the {@link #URI(String)} constructor;
0789:             * this may cause a {@link URISyntaxException} to be thrown.  </p>
0790:             *
0791:             * @param   scheme    Scheme name
0792:             * @param   ssp       Scheme-specific part
0793:             * @param   fragment  Fragment
0794:             *
0795:             * @throws  URISyntaxException
0796:             *          If the URI string constructed from the given components
0797:             *          violates RFC&nbsp;2396
0798:             */
0799:            public URI(String scheme, String ssp, String fragment)
0800:                    throws URISyntaxException {
0801:                new Parser(toString(scheme, ssp, null, null, null, -1, null,
0802:                        null, fragment)).parse(false);
0803:            }
0804:
0805:            /**
0806:             * Creates a URI by parsing the given string.
0807:             *
0808:             * <p> This convenience factory method works as if by invoking the {@link
0809:             * #URI(String)} constructor; any {@link URISyntaxException} thrown by the
0810:             * constructor is caught and wrapped in a new {@link
0811:             * IllegalArgumentException} object, which is then thrown.
0812:             *
0813:             * <p> This method is provided for use in situations where it is known that
0814:             * the given string is a legal URI, for example for URI constants declared
0815:             * within in a program, and so it would be considered a programming error
0816:             * for the string not to parse as such.  The constructors, which throw
0817:             * {@link URISyntaxException} directly, should be used situations where a
0818:             * URI is being constructed from user input or from some other source that
0819:             * may be prone to errors.  </p>
0820:             *
0821:             * @param  str   The string to be parsed into a URI
0822:             * @return The new URI
0823:             *
0824:             * @throws  NullPointerException
0825:             *          If <tt>str</tt> is <tt>null</tt>
0826:             *
0827:             * @throws  IllegalArgumentException
0828:             *          If the given string violates RFC&nbsp;2396
0829:             */
0830:            public static URI create(String str) {
0831:                try {
0832:                    return new URI(str);
0833:                } catch (URISyntaxException x) {
0834:                    IllegalArgumentException y = new IllegalArgumentException();
0835:                    y.initCause(x);
0836:                    throw y;
0837:                }
0838:            }
0839:
0840:            // -- Operations --
0841:
0842:            /**
0843:             * Attempts to parse this URI's authority component, if defined, into
0844:             * user-information, host, and port components.
0845:             *
0846:             * <p> If this URI's authority component has already been recognized as
0847:             * being server-based then it will already have been parsed into
0848:             * user-information, host, and port components.  In this case, or if this
0849:             * URI has no authority component, this method simply returns this URI.
0850:             *
0851:             * <p> Otherwise this method attempts once more to parse the authority
0852:             * component into user-information, host, and port components, and throws
0853:             * an exception describing why the authority component could not be parsed
0854:             * in that way.
0855:             *
0856:             * <p> This method is provided because the generic URI syntax specified in
0857:             * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
0858:             * cannot always distinguish a malformed server-based authority from a
0859:             * legitimate registry-based authority.  It must therefore treat some
0860:             * instances of the former as instances of the latter.  The authority
0861:             * component in the URI string <tt>"//foo:bar"</tt>, for example, is not a
0862:             * legal server-based authority but it is legal as a registry-based
0863:             * authority.
0864:             *
0865:             * <p> In many common situations, for example when working URIs that are
0866:             * known to be either URNs or URLs, the hierarchical URIs being used will
0867:             * always be server-based.  They therefore must either be parsed as such or
0868:             * treated as an error.  In these cases a statement such as
0869:             *
0870:             * <blockquote>
0871:             * <tt>URI </tt><i>u</i><tt> = new URI(str).parseServerAuthority();</tt>
0872:             * </blockquote>
0873:             *
0874:             * <p> can be used to ensure that <i>u</i> always refers to a URI that, if
0875:             * it has an authority component, has a server-based authority with proper
0876:             * user-information, host, and port components.  Invoking this method also
0877:             * ensures that if the authority could not be parsed in that way then an
0878:             * appropriate diagnostic message can be issued based upon the exception
0879:             * that is thrown. </p>
0880:             *
0881:             * @return  A URI whose authority field has been parsed
0882:             *          as a server-based authority
0883:             *
0884:             * @throws  URISyntaxException
0885:             *          If the authority component of this URI is defined
0886:             *          but cannot be parsed as a server-based authority
0887:             *          according to RFC&nbsp;2396
0888:             */
0889:            public URI parseServerAuthority() throws URISyntaxException {
0890:                // We could be clever and cache the error message and index from the
0891:                // exception thrown during the original parse, but that would require
0892:                // either more fields or a more-obscure representation.
0893:                if ((host != null) || (authority == null))
0894:                    return this ;
0895:                defineString();
0896:                new Parser(string).parse(true);
0897:                return this ;
0898:            }
0899:
0900:            /**
0901:             * Normalizes this URI's path.
0902:             *
0903:             * <p> If this URI is opaque, or if its path is already in normal form,
0904:             * then this URI is returned.  Otherwise a new URI is constructed that is
0905:             * identical to this URI except that its path is computed by normalizing
0906:             * this URI's path in a manner consistent with <a
0907:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0908:             * section&nbsp;5.2, step&nbsp;6, sub-steps&nbsp;c through&nbsp;f; that is:
0909:             * </p>
0910:             *
0911:             * <ol>
0912:             *
0913:             *   <li><p> All <tt>"."</tt> segments are removed. </p></li>
0914:             *
0915:             *   <li><p> If a <tt>".."</tt> segment is preceded by a non-<tt>".."</tt>
0916:             *   segment then both of these segments are removed.  This step is
0917:             *   repeated until it is no longer applicable. </p></li>
0918:             *
0919:             *   <li><p> If the path is relative, and if its first segment contains a
0920:             *   colon character (<tt>':'</tt>), then a <tt>"."</tt> segment is
0921:             *   prepended.  This prevents a relative URI with a path such as
0922:             *   <tt>"a:b/c/d"</tt> from later being re-parsed as an opaque URI with a
0923:             *   scheme of <tt>"a"</tt> and a scheme-specific part of <tt>"b/c/d"</tt>.
0924:             *   <b><i>(Deviation from RFC&nbsp;2396)</i></b> </p></li>
0925:             *
0926:             * </ol>
0927:             *
0928:             * <p> A normalized path will begin with one or more <tt>".."</tt> segments
0929:             * if there were insufficient non-<tt>".."</tt> segments preceding them to
0930:             * allow their removal.  A normalized path will begin with a <tt>"."</tt>
0931:             * segment if one was inserted by step 3 above.  Otherwise, a normalized
0932:             * path will not contain any <tt>"."</tt> or <tt>".."</tt> segments. </p>
0933:             *
0934:             * @return  A URI equivalent to this URI,
0935:             *          but whose path is in normal form
0936:             */
0937:            public URI normalize() {
0938:                return normalize(this );
0939:            }
0940:
0941:            /**
0942:             * Resolves the given URI against this URI.
0943:             *
0944:             * <p> If the given URI is already absolute, or if this URI is opaque, then
0945:             * the given URI is returned.
0946:             *
0947:             * <p><a name="resolve-frag"> If the given URI's fragment component is
0948:             * defined, its path component is empty, and its scheme, authority, and
0949:             * query components are undefined, then a URI with the given fragment but
0950:             * with all other components equal to those of this URI is returned.  This
0951:             * allows a URI representing a standalone fragment reference, such as
0952:             * <tt>"#foo"</tt>, to be usefully resolved against a base URI.
0953:             *
0954:             * <p> Otherwise this method constructs a new hierarchical URI in a manner
0955:             * consistent with <a
0956:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0957:             * section&nbsp;5.2; that is: </p>
0958:             *
0959:             * <ol>
0960:             *
0961:             *   <li><p> A new URI is constructed with this URI's scheme and the given
0962:             *   URI's query and fragment components. </p></li>
0963:             *
0964:             *   <li><p> If the given URI has an authority component then the new URI's
0965:             *   authority and path are taken from the given URI. </p></li>
0966:             *
0967:             *   <li><p> Otherwise the new URI's authority component is copied from
0968:             *   this URI, and its path is computed as follows: </p></li>
0969:             *
0970:             *   <ol type=a>
0971:             *
0972:             *     <li><p> If the given URI's path is absolute then the new URI's path
0973:             *     is taken from the given URI. </p></li>
0974:             *
0975:             *     <li><p> Otherwise the given URI's path is relative, and so the new
0976:             *     URI's path is computed by resolving the path of the given URI
0977:             *     against the path of this URI.  This is done by concatenating all but
0978:             *     the last segment of this URI's path, if any, with the given URI's
0979:             *     path and then normalizing the result as if by invoking the {@link
0980:             *     #normalize() normalize} method. </p></li>
0981:             *
0982:             *   </ol>
0983:             *
0984:             * </ol>
0985:             *
0986:             * <p> The result of this method is absolute if, and only if, either this
0987:             * URI is absolute or the given URI is absolute.  </p>
0988:             *
0989:             * @param  uri  The URI to be resolved against this URI
0990:             * @return The resulting URI
0991:             *
0992:             * @throws  NullPointerException
0993:             *          If <tt>uri</tt> is <tt>null</tt>
0994:             */
0995:            public URI resolve(URI uri) {
0996:                return resolve(this , uri);
0997:            }
0998:
0999:            /**
1000:             * Constructs a new URI by parsing the given string and then resolving it
1001:             * against this URI.
1002:             *
1003:             * <p> This convenience method works as if invoking it were equivalent to
1004:             * evaluating the expression <tt>{@link #resolve(java.net.URI)
1005:             * resolve}(URI.{@link #create(String) create}(str))</tt>. </p>
1006:             *
1007:             * @param  str   The string to be parsed into a URI
1008:             * @return The resulting URI
1009:             *
1010:             * @throws  NullPointerException
1011:             *          If <tt>str</tt> is <tt>null</tt>
1012:             *
1013:             * @throws  IllegalArgumentException
1014:             *          If the given string violates RFC&nbsp;2396
1015:             */
1016:            public URI resolve(String str) {
1017:                return resolve(URI.create(str));
1018:            }
1019:
1020:            /**
1021:             * Relativizes the given URI against this URI.
1022:             *
1023:             * <p> The relativization of the given URI against this URI is computed as
1024:             * follows: </p>
1025:             *
1026:             * <ol>
1027:             *
1028:             *   <li><p> If either this URI or the given URI are opaque, or if the
1029:             *   scheme and authority components of the two URIs are not identical, or
1030:             *   if the path of this URI is not a prefix of the path of the given URI,
1031:             *   then the given URI is returned. </p></li>
1032:             *
1033:             *   <li><p> Otherwise a new relative hierarchical URI is constructed with
1034:             *   query and fragment components taken from the given URI and with a path
1035:             *   component computed by removing this URI's path from the beginning of
1036:             *   the given URI's path. </p></li>
1037:             *
1038:             * </ol>
1039:             *
1040:             * @param  uri  The URI to be relativized against this URI
1041:             * @return The resulting URI
1042:             *
1043:             * @throws  NullPointerException
1044:             *          If <tt>uri</tt> is <tt>null</tt>
1045:             */
1046:            public URI relativize(URI uri) {
1047:                return relativize(this , uri);
1048:            }
1049:
1050:            /**
1051:             * Constructs a URL from this URI.
1052:             *
1053:             * <p> This convenience method works as if invoking it were equivalent to
1054:             * evaluating the expression <tt>new&nbsp;URL(this.toString())</tt> after
1055:             * first checking that this URI is absolute. </p>
1056:             *
1057:             * @return  A URL constructed from this URI
1058:             *
1059:             * @throws  IllegalArgumentException
1060:             *          If this URL is not absolute
1061:             *
1062:             * @throws  MalformedURLException
1063:             *          If a protocol handler for the URL could not be found,
1064:             *          or if some other error occurred while constructing the URL
1065:             */
1066:            public URL toURL() throws MalformedURLException {
1067:                if (!isAbsolute())
1068:                    throw new IllegalArgumentException("URI is not absolute");
1069:                return new URL(toString());
1070:            }
1071:
1072:            // -- Component access methods --
1073:
1074:            /**
1075:             * Returns the scheme component of this URI.
1076:             *
1077:             * <p> The scheme component of a URI, if defined, only contains characters
1078:             * in the <i>alphanum</i> category and in the string <tt>"-.+"</tt>.  A
1079:             * scheme always starts with an <i>alpha</i> character. </p>
1080:             *
1081:             * The scheme component of a URI cannot contain escaped octets, hence this
1082:             * method does not perform any decoding.  </p>
1083:             *
1084:             * @return  The scheme component of this URI,
1085:             *          or <tt>null</tt> if the scheme is undefined
1086:             */
1087:            public String getScheme() {
1088:                return scheme;
1089:            }
1090:
1091:            /**
1092:             * Tells whether or not this URI is absolute.
1093:             *
1094:             * <p> A URI is absolute if, and only if, it has a scheme component. </p>
1095:             *
1096:             * @return  <tt>true</tt> if, and only if, this URI is absolute
1097:             */
1098:            public boolean isAbsolute() {
1099:                return scheme != null;
1100:            }
1101:
1102:            /**
1103:             * Tells whether or not this URI is opaque.
1104:             *
1105:             * <p> A URI is opaque if, and only if, it is absolute and its
1106:             * scheme-specific part does not begin with a slash character ('/').
1107:             * An opaque URI has a scheme, a scheme-specific part, and possibly
1108:             * a fragment; all other components are undefined. </p>
1109:             *
1110:             * @return  <tt>true</tt> if, and only if, this URI is opaque
1111:             */
1112:            public boolean isOpaque() {
1113:                return path == null;
1114:            }
1115:
1116:            /**
1117:             * Returns the raw scheme-specific part of this URI.  The scheme-specific
1118:             * part is never undefined, though it may be empty.
1119:             *
1120:             * <p> The scheme-specific part of a URI only contains legal URI
1121:             * characters. </p>
1122:             *
1123:             * @return  The raw scheme-specific part of this URI
1124:             *          (never <tt>null</tt>)
1125:             */
1126:            public String getRawSchemeSpecificPart() {
1127:                defineSchemeSpecificPart();
1128:                return schemeSpecificPart;
1129:            }
1130:
1131:            /**
1132:             * Returns the decoded scheme-specific part of this URI.
1133:             *
1134:             * <p> The string returned by this method is equal to that returned by the
1135:             * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method
1136:             * except that all sequences of escaped octets are <a
1137:             * href="#decode">decoded</a>.  </p>
1138:             *
1139:             * @return  The decoded scheme-specific part of this URI
1140:             *          (never <tt>null</tt>)
1141:             */
1142:            public String getSchemeSpecificPart() {
1143:                if (decodedSchemeSpecificPart == null)
1144:                    decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart());
1145:                return decodedSchemeSpecificPart;
1146:            }
1147:
1148:            /**
1149:             * Returns the raw authority component of this URI.
1150:             *
1151:             * <p> The authority component of a URI, if defined, only contains the
1152:             * commercial-at character (<tt>'@'</tt>) and characters in the
1153:             * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i>
1154:             * categories.  If the authority is server-based then it is further
1155:             * constrained to have valid user-information, host, and port
1156:             * components. </p>
1157:             *
1158:             * @return  The raw authority component of this URI,
1159:             *          or <tt>null</tt> if the authority is undefined
1160:             */
1161:            public String getRawAuthority() {
1162:                return authority;
1163:            }
1164:
1165:            /**
1166:             * Returns the decoded authority component of this URI.
1167:             *
1168:             * <p> The string returned by this method is equal to that returned by the
1169:             * {@link #getRawAuthority() getRawAuthority} method except that all
1170:             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1171:             *
1172:             * @return  The decoded authority component of this URI,
1173:             *          or <tt>null</tt> if the authority is undefined
1174:             */
1175:            public String getAuthority() {
1176:                if (decodedAuthority == null)
1177:                    decodedAuthority = decode(authority);
1178:                return decodedAuthority;
1179:            }
1180:
1181:            /**
1182:             * Returns the raw user-information component of this URI.
1183:             *
1184:             * <p> The user-information component of a URI, if defined, only contains
1185:             * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and
1186:             * <i>other</i> categories. </p>
1187:             *
1188:             * @return  The raw user-information component of this URI,
1189:             *          or <tt>null</tt> if the user information is undefined
1190:             */
1191:            public String getRawUserInfo() {
1192:                return userInfo;
1193:            }
1194:
1195:            /**
1196:             * Returns the decoded user-information component of this URI.
1197:             *
1198:             * <p> The string returned by this method is equal to that returned by the
1199:             * {@link #getRawUserInfo() getRawUserInfo} method except that all
1200:             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1201:             *
1202:             * @return  The decoded user-information component of this URI,
1203:             *          or <tt>null</tt> if the user information is undefined
1204:             */
1205:            public String getUserInfo() {
1206:                if ((decodedUserInfo == null) && (userInfo != null))
1207:                    decodedUserInfo = decode(userInfo);
1208:                return decodedUserInfo;
1209:            }
1210:
1211:            /**
1212:             * Returns the host component of this URI.
1213:             *
1214:             * <p> The host component of a URI, if defined, will have one of the
1215:             * following forms: </p>
1216:             *
1217:             * <ul type=disc>
1218:             *
1219:             *   <li><p> A domain name consisting of one or more <i>labels</i>
1220:             *   separated by period characters (<tt>'.'</tt>), optionally followed by
1221:             *   a period character.  Each label consists of <i>alphanum</i> characters
1222:             *   as well as hyphen characters (<tt>'-'</tt>), though hyphens never
1223:             *   occur as the first or last characters in a label. The rightmost
1224:             *   label of a domain name consisting of two or more labels, begins
1225:             *   with an <i>alpha</i> character. </li></p>
1226:             *
1227:             *   <li><p> A dotted-quad IPv4 address of the form
1228:             *   <i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+</tt>,
1229:             *   where no <i>digit</i> sequence is longer than three characters and no
1230:             *   sequence has a value larger than 255. </p></li>
1231:             *
1232:             *   <li><p> An IPv6 address enclosed in square brackets (<tt>'['</tt> and
1233:             *   <tt>']'</tt>) and consisting of hexadecimal digits, colon characters
1234:             *   (<tt>':'</tt>), and possibly an embedded IPv4 address.  The full
1235:             *   syntax of IPv6 addresses is specified in <a
1236:             *   href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6
1237:             *   Addressing Architecture</i></a>.  </p></li>
1238:             *
1239:             * </ul>
1240:             *
1241:             * The host component of a URI cannot contain escaped octets, hence this
1242:             * method does not perform any decoding.  </p>
1243:             *
1244:             * @return  The host component of this URI,
1245:             *          or <tt>null</tt> if the host is undefined
1246:             */
1247:            public String getHost() {
1248:                return host;
1249:            }
1250:
1251:            /**
1252:             * Returns the port number of this URI.
1253:             *
1254:             * <p> The port component of a URI, if defined, is a non-negative
1255:             * integer. </p>
1256:             *
1257:             * @return  The port component of this URI,
1258:             *          or <tt>-1</tt> if the port is undefined
1259:             */
1260:            public int getPort() {
1261:                return port;
1262:            }
1263:
1264:            /**
1265:             * Returns the raw path component of this URI.
1266:             *
1267:             * <p> The path component of a URI, if defined, only contains the slash
1268:             * character (<tt>'/'</tt>), the commercial-at character (<tt>'@'</tt>),
1269:             * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>,
1270:             * and <i>other</i> categories. </p>
1271:             *
1272:             * @return  The path component of this URI,
1273:             *          or <tt>null</tt> if the path is undefined
1274:             */
1275:            public String getRawPath() {
1276:                return path;
1277:            }
1278:
1279:            /**
1280:             * Returns the decoded path component of this URI.
1281:             *
1282:             * <p> The string returned by this method is equal to that returned by the
1283:             * {@link #getRawPath() getRawPath} method except that all sequences of
1284:             * escaped octets are <a href="#decode">decoded</a>.  </p>
1285:             *
1286:             * @return  The decoded path component of this URI,
1287:             *          or <tt>null</tt> if the path is undefined
1288:             */
1289:            public String getPath() {
1290:                if ((decodedPath == null) && (path != null))
1291:                    decodedPath = decode(path);
1292:                return decodedPath;
1293:            }
1294:
1295:            /**
1296:             * Returns the raw query component of this URI.
1297:             *
1298:             * <p> The query component of a URI, if defined, only contains legal URI
1299:             * characters. </p>
1300:             *
1301:             * @return  The raw query component of this URI,
1302:             *          or <tt>null</tt> if the query is undefined
1303:             */
1304:            public String getRawQuery() {
1305:                return query;
1306:            }
1307:
1308:            /**
1309:             * Returns the decoded query component of this URI.
1310:             *
1311:             * <p> The string returned by this method is equal to that returned by the
1312:             * {@link #getRawQuery() getRawQuery} method except that all sequences of
1313:             * escaped octets are <a href="#decode">decoded</a>.  </p>
1314:             *
1315:             * @return  The decoded query component of this URI,
1316:             *          or <tt>null</tt> if the query is undefined
1317:             */
1318:            public String getQuery() {
1319:                if ((decodedQuery == null) && (query != null))
1320:                    decodedQuery = decode(query);
1321:                return decodedQuery;
1322:            }
1323:
1324:            /**
1325:             * Returns the raw fragment component of this URI.
1326:             *
1327:             * <p> The fragment component of a URI, if defined, only contains legal URI
1328:             * characters. </p>
1329:             *
1330:             * @return  The raw fragment component of this URI,
1331:             *          or <tt>null</tt> if the fragment is undefined
1332:             */
1333:            public String getRawFragment() {
1334:                return fragment;
1335:            }
1336:
1337:            /**
1338:             * Returns the decoded fragment component of this URI.
1339:             *
1340:             * <p> The string returned by this method is equal to that returned by the
1341:             * {@link #getRawFragment() getRawFragment} method except that all
1342:             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1343:             *
1344:             * @return  The decoded fragment component of this URI,
1345:             *          or <tt>null</tt> if the fragment is undefined
1346:             */
1347:            public String getFragment() {
1348:                if ((decodedFragment == null) && (fragment != null))
1349:                    decodedFragment = decode(fragment);
1350:                return decodedFragment;
1351:            }
1352:
1353:            // -- Equality, comparison, hash code, toString, and serialization --
1354:
1355:            /**
1356:             * Tests this URI for equality with another object.
1357:             *
1358:             * <p> If the given object is not a URI then this method immediately
1359:             * returns <tt>false</tt>.
1360:             *
1361:             * <p> For two URIs to be considered equal requires that either both are
1362:             * opaque or both are hierarchical.  Their schemes must either both be
1363:             * undefined or else be equal without regard to case. Their fragments
1364:             * must either both be undefined or else be equal.
1365:             *
1366:             * <p> For two opaque URIs to be considered equal, their scheme-specific
1367:             * parts must be equal.
1368:             *
1369:             * <p> For two hierarchical URIs to be considered equal, their paths must
1370:             * be equal and their queries must either both be undefined or else be
1371:             * equal.  Their authorities must either both be undefined, or both be
1372:             * registry-based, or both be server-based.  If their authorities are
1373:             * defined and are registry-based, then they must be equal.  If their
1374:             * authorities are defined and are server-based, then their hosts must be
1375:             * equal without regard to case, their port numbers must be equal, and
1376:             * their user-information components must be equal.
1377:             *
1378:             * <p> When testing the user-information, path, query, fragment, authority,
1379:             * or scheme-specific parts of two URIs for equality, the raw forms rather
1380:             * than the encoded forms of these components are compared and the
1381:             * hexadecimal digits of escaped octets are compared without regard to
1382:             * case.
1383:             *
1384:             * <p> This method satisfies the general contract of the {@link
1385:             * java.lang.Object#equals(Object) Object.equals} method. </p>
1386:             *
1387:             * @param   ob   The object to which this object is to be compared
1388:             *
1389:             * @return  <tt>true</tt> if, and only if, the given object is a URI that
1390:             *          is identical to this URI
1391:             */
1392:            public boolean equals(Object ob) {
1393:                if (ob == this )
1394:                    return true;
1395:                if (!(ob instanceof  URI))
1396:                    return false;
1397:                URI that = (URI) ob;
1398:                if (this .isOpaque() != that.isOpaque())
1399:                    return false;
1400:                if (!equalIgnoringCase(this .scheme, that.scheme))
1401:                    return false;
1402:                if (!equal(this .fragment, that.fragment))
1403:                    return false;
1404:
1405:                // Opaque
1406:                if (this .isOpaque())
1407:                    return equal(this .schemeSpecificPart,
1408:                            that.schemeSpecificPart);
1409:
1410:                // Hierarchical
1411:                if (!equal(this .path, that.path))
1412:                    return false;
1413:                if (!equal(this .query, that.query))
1414:                    return false;
1415:
1416:                // Authorities
1417:                if (this .authority == that.authority)
1418:                    return true;
1419:                if (this .host != null) {
1420:                    // Server-based
1421:                    if (!equal(this .userInfo, that.userInfo))
1422:                        return false;
1423:                    if (!equalIgnoringCase(this .host, that.host))
1424:                        return false;
1425:                    if (this .port != that.port)
1426:                        return false;
1427:                } else if (this .authority != null) {
1428:                    // Registry-based
1429:                    if (!equal(this .authority, that.authority))
1430:                        return false;
1431:                } else if (this .authority != that.authority) {
1432:                    return false;
1433:                }
1434:
1435:                return true;
1436:            }
1437:
1438:            /**
1439:             * Returns a hash-code value for this URI.  The hash code is based upon all
1440:             * of the URI's components, and satisfies the general contract of the
1441:             * {@link java.lang.Object#hashCode() Object.hashCode} method. </p>
1442:             *
1443:             * @return  A hash-code value for this URI
1444:             */
1445:            public int hashCode() {
1446:                if (hash != 0)
1447:                    return hash;
1448:                int h = hashIgnoringCase(0, scheme);
1449:                h = hash(h, fragment);
1450:                if (isOpaque()) {
1451:                    h = hash(h, schemeSpecificPart);
1452:                } else {
1453:                    h = hash(h, path);
1454:                    h = hash(h, query);
1455:                    if (host != null) {
1456:                        h = hash(h, userInfo);
1457:                        h = hashIgnoringCase(h, host);
1458:                        h += 1949 * port;
1459:                    } else {
1460:                        h = hash(h, authority);
1461:                    }
1462:                }
1463:                hash = h;
1464:                return h;
1465:            }
1466:
1467:            /**
1468:             * Compares this URI to another object, which must be a URI.
1469:             *
1470:             * <p> When comparing corresponding components of two URIs, if one
1471:             * component is undefined but the other is defined then the first is
1472:             * considered to be less than the second.  Unless otherwise noted, string
1473:             * components are ordered according to their natural, case-sensitive
1474:             * ordering as defined by the {@link java.lang.String#compareTo(Object)
1475:             * String.compareTo} method.  String components that are subject to
1476:             * encoding are compared by comparing their raw forms rather than their
1477:             * encoded forms.
1478:             *
1479:             * <p> The ordering of URIs is defined as follows: </p>
1480:             *
1481:             * <ul type=disc>
1482:             *
1483:             *   <li><p> Two URIs with different schemes are ordered according the
1484:             *   ordering of their schemes, without regard to case. </p></li>
1485:             *
1486:             *   <li><p> A hierarchical URI is considered to be less than an opaque URI
1487:             *   with an identical scheme. </p></li>
1488:             *
1489:             *   <li><p> Two opaque URIs with identical schemes are ordered according
1490:             *   to the ordering of their scheme-specific parts. </p></li>
1491:             *
1492:             *   <li><p> Two opaque URIs with identical schemes and scheme-specific
1493:             *   parts are ordered according to the ordering of their
1494:             *   fragments. </p></li>
1495:             *
1496:             *   <li><p> Two hierarchical URIs with identical schemes are ordered
1497:             *   according to the ordering of their authority components: </p></li>
1498:             *
1499:             *   <ul type=disc>
1500:             *
1501:             *     <li><p> If both authority components are server-based then the URIs
1502:             *     are ordered according to their user-information components; if these
1503:             *     components are identical then the URIs are ordered according to the
1504:             *     ordering of their hosts, without regard to case; if the hosts are
1505:             *     identical then the URIs are ordered according to the ordering of
1506:             *     their ports. </p></li>
1507:             *
1508:             *     <li><p> If one or both authority components are registry-based then
1509:             *     the URIs are ordered according to the ordering of their authority
1510:             *     components. </p></li>
1511:             *
1512:             *   </ul>
1513:             *
1514:             *   <li><p> Finally, two hierarchical URIs with identical schemes and
1515:             *   authority components are ordered according to the ordering of their
1516:             *   paths; if their paths are identical then they are ordered according to
1517:             *   the ordering of their queries; if the queries are identical then they
1518:             *   are ordered according to the order of their fragments. </p></li>
1519:             *
1520:             * </ul>
1521:             *
1522:             * <p> This method satisfies the general contract of the {@link
1523:             * java.lang.Comparable#compareTo(Object) Comparable.compareTo}
1524:             * method. </p>
1525:             *
1526:             * @param   ob
1527:             *          The object to which this URI is to be compared
1528:             *
1529:             * @return  A negative integer, zero, or a positive integer as this URI is
1530:             *          less than, equal to, or greater than the given URI
1531:             *
1532:             * @throws  ClassCastException
1533:             *          If the given object is not a URI
1534:             */
1535:            public int compareTo(Object ob) {
1536:                URI that = (URI) ob;
1537:                int c;
1538:
1539:                if ((c = compareIgnoringCase(this .scheme, that.scheme)) != 0)
1540:                    return c;
1541:
1542:                if (this .isOpaque()) {
1543:                    if (that.isOpaque()) {
1544:                        // Both opaque
1545:                        if ((c = compare(this .schemeSpecificPart,
1546:                                that.schemeSpecificPart)) != 0)
1547:                            return c;
1548:                        return compare(this .fragment, that.fragment);
1549:                    }
1550:                    return +1; // Opaque > hierarchical
1551:                } else if (that.isOpaque()) {
1552:                    return -1; // Hierarchical < opaque
1553:                }
1554:
1555:                // Hierarchical
1556:                if ((this .host != null) && (that.host != null)) {
1557:                    // Both server-based
1558:                    if ((c = compare(this .userInfo, that.userInfo)) != 0)
1559:                        return c;
1560:                    if ((c = compareIgnoringCase(this .host, that.host)) != 0)
1561:                        return c;
1562:                    if ((c = this .port - that.port) != 0)
1563:                        return c;
1564:                } else {
1565:                    // If one or both authorities are registry-based then we simply
1566:                    // compare them in the usual, case-sensitive way.  If one is
1567:                    // registry-based and one is server-based then the strings are
1568:                    // guaranteed to be unequal, hence the comparison will never return
1569:                    // zero and the compareTo and equals methods will remain
1570:                    // consistent.
1571:                    if ((c = compare(this .authority, that.authority)) != 0)
1572:                        return c;
1573:                }
1574:
1575:                if ((c = compare(this .path, that.path)) != 0)
1576:                    return c;
1577:                if ((c = compare(this .query, that.query)) != 0)
1578:                    return c;
1579:                return compare(this .fragment, that.fragment);
1580:            }
1581:
1582:            /**
1583:             * Returns the content of this URI as a string.
1584:             *
1585:             * <p> If this URI was created by invoking one of the constructors in this
1586:             * class then a string equivalent to the original input string, or to the
1587:             * string computed from the originally-given components, as appropriate, is
1588:             * returned.  Otherwise this URI was created by normalization, resolution,
1589:             * or relativization, and so a string is constructed from this URI's
1590:             * components according to the rules specified in <a
1591:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
1592:             * section&nbsp;5.2, step&nbsp;7. </p>
1593:             *
1594:             * @return  The string form of this URI
1595:             */
1596:            public String toString() {
1597:                defineString();
1598:                return string;
1599:            }
1600:
1601:            /**
1602:             * Returns the content of this URI as a US-ASCII string.
1603:             *
1604:             * <p> If this URI does not contain any characters in the <i>other</i>
1605:             * category then an invocation of this method will return the same value as
1606:             * an invocation of the {@link #toString() toString} method.  Otherwise
1607:             * this method works as if by invoking that method and then <a
1608:             * href="#encode">encoding</a> the result.  </p>
1609:             *
1610:             * @return  The string form of this URI, encoded as needed
1611:             *          so that it only contains characters in the US-ASCII
1612:             *          charset
1613:             */
1614:            public String toASCIIString() {
1615:                defineString();
1616:                return encode(string);
1617:            }
1618:
1619:            // -- Serialization support --
1620:
1621:            /**
1622:             * Saves the content of this URI to the given serial stream.
1623:             *
1624:             * <p> The only serializable field of a URI instance is its <tt>string</tt>
1625:             * field.  That field is given a value, if it does not have one already,
1626:             * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()}
1627:             * method of the given object-output stream is invoked. </p>
1628:             *
1629:             * @param  os  The object-output stream to which this object
1630:             *             is to be written
1631:             */
1632:            private void writeObject(ObjectOutputStream os) throws IOException {
1633:                defineString();
1634:                os.defaultWriteObject(); // Writes the string field only
1635:            }
1636:
1637:            /**
1638:             * Reconstitutes a URI from the given serial stream.
1639:             *
1640:             * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is
1641:             * invoked to read the value of the <tt>string</tt> field.  The result is
1642:             * then parsed in the usual way.
1643:             *
1644:             * @param  is  The object-input stream from which this object
1645:             *             is being read
1646:             */
1647:            private void readObject(ObjectInputStream is)
1648:                    throws ClassNotFoundException, IOException {
1649:                port = -1;
1650:                is.defaultReadObject();
1651:                try {
1652:                    new Parser(string).parse(false);
1653:                } catch (URISyntaxException x) {
1654:                    IOException y = new InvalidObjectException("Invalid URI");
1655:                    y.initCause(x);
1656:                    throw y;
1657:                }
1658:            }
1659:
1660:            // -- End of public methods --
1661:
1662:            // -- Utility methods for string-field comparison and hashing --
1663:
1664:            // These methods return appropriate values for null string arguments,
1665:            // thereby simplifying the equals, hashCode, and compareTo methods.
1666:            //
1667:            // The case-ignoring methods should only be applied to strings whose
1668:            // characters are all known to be US-ASCII.  Because of this restriction,
1669:            // these methods are faster than the similar methods in the String class.
1670:
1671:            // US-ASCII only
1672:            private static int toLower(char c) {
1673:                if ((c >= 'A') && (c <= 'Z'))
1674:                    return c + ('a' - 'A');
1675:                return c;
1676:            }
1677:
1678:            private static boolean equal(String s, String t) {
1679:                if (s == t)
1680:                    return true;
1681:                if ((s != null) && (t != null)) {
1682:                    if (s.length() != t.length())
1683:                        return false;
1684:                    if (s.indexOf('%') < 0)
1685:                        return s.equals(t);
1686:                    int n = s.length();
1687:                    for (int i = 0; i < n;) {
1688:                        char c = s.charAt(i);
1689:                        char d = t.charAt(i);
1690:                        if (c != '%') {
1691:                            if (c != d)
1692:                                return false;
1693:                            i++;
1694:                            continue;
1695:                        }
1696:                        i++;
1697:                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1698:                            return false;
1699:                        i++;
1700:                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1701:                            return false;
1702:                        i++;
1703:                    }
1704:                    return true;
1705:                }
1706:                return false;
1707:            }
1708:
1709:            // US-ASCII only
1710:            private static boolean equalIgnoringCase(String s, String t) {
1711:                if (s == t)
1712:                    return true;
1713:                if ((s != null) && (t != null)) {
1714:                    int n = s.length();
1715:                    if (t.length() != n)
1716:                        return false;
1717:                    for (int i = 0; i < n; i++) {
1718:                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1719:                            return false;
1720:                    }
1721:                    return true;
1722:                }
1723:                return false;
1724:            }
1725:
1726:            private static int hash(int hash, String s) {
1727:                if (s == null)
1728:                    return hash;
1729:                return hash * 127 + s.hashCode();
1730:            }
1731:
1732:            // US-ASCII only
1733:            private static int hashIgnoringCase(int hash, String s) {
1734:                if (s == null)
1735:                    return hash;
1736:                int h = hash;
1737:                int n = s.length();
1738:                for (int i = 0; i < n; i++)
1739:                    h = 31 * h + toLower(s.charAt(i));
1740:                return h;
1741:            }
1742:
1743:            private static int compare(String s, String t) {
1744:                if (s == t)
1745:                    return 0;
1746:                if (s != null) {
1747:                    if (t != null)
1748:                        return s.compareTo(t);
1749:                    else
1750:                        return +1;
1751:                } else {
1752:                    return -1;
1753:                }
1754:            }
1755:
1756:            // US-ASCII only
1757:            private static int compareIgnoringCase(String s, String t) {
1758:                if (s == t)
1759:                    return 0;
1760:                if (s != null) {
1761:                    if (t != null) {
1762:                        int sn = s.length();
1763:                        int tn = t.length();
1764:                        int n = sn < tn ? sn : tn;
1765:                        for (int i = 0; i < n; i++) {
1766:                            int c = toLower(s.charAt(i)) - toLower(t.charAt(i));
1767:                            if (c != 0)
1768:                                return c;
1769:                        }
1770:                        return sn - tn;
1771:                    }
1772:                    return +1;
1773:                } else {
1774:                    return -1;
1775:                }
1776:            }
1777:
1778:            // -- String construction --
1779:
1780:            // If a scheme is given then the path, if given, must be absolute
1781:            //
1782:            private static void checkPath(String s, String scheme, String path)
1783:                    throws URISyntaxException {
1784:                if (scheme != null) {
1785:                    if ((path != null)
1786:                            && ((path.length() > 0) && (path.charAt(0) != '/')))
1787:                        throw new URISyntaxException(s,
1788:                                "Relative path in absolute URI");
1789:                }
1790:            }
1791:
1792:            private void appendAuthority(StringBuffer sb, String authority,
1793:                    String userInfo, String host, int port) {
1794:                if (host != null) {
1795:                    sb.append("//");
1796:                    if (userInfo != null) {
1797:                        sb.append(quote(userInfo, L_USERINFO, H_USERINFO));
1798:                        sb.append('@');
1799:                    }
1800:                    boolean needBrackets = ((host.indexOf(':') >= 0)
1801:                            && !host.startsWith("[") && !host.endsWith("]"));
1802:                    if (needBrackets)
1803:                        sb.append('[');
1804:                    sb.append(host);
1805:                    if (needBrackets)
1806:                        sb.append(']');
1807:                    if (port != -1) {
1808:                        sb.append(':');
1809:                        sb.append(port);
1810:                    }
1811:                } else if (authority != null) {
1812:                    sb.append("//");
1813:                    sb.append(quote(authority, L_REG_NAME | L_SERVER,
1814:                            H_REG_NAME | H_SERVER));
1815:                }
1816:            }
1817:
1818:            private void appendSchemeSpecificPart(StringBuffer sb,
1819:                    String opaquePart, String authority, String userInfo,
1820:                    String host, int port, String path, String query) {
1821:                if (opaquePart != null) {
1822:                    sb.append(quote(opaquePart, L_URIC, H_URIC));
1823:                } else {
1824:                    appendAuthority(sb, authority, userInfo, host, port);
1825:                    if (path != null)
1826:                        sb.append(quote(path, L_PATH, H_PATH));
1827:                    if (query != null) {
1828:                        sb.append('?');
1829:                        sb.append(quote(query, L_URIC, H_URIC));
1830:                    }
1831:                }
1832:            }
1833:
1834:            private void appendFragment(StringBuffer sb, String fragment) {
1835:                if (fragment != null) {
1836:                    sb.append('#');
1837:                    sb.append(quote(fragment, L_URIC, H_URIC));
1838:                }
1839:            }
1840:
1841:            private String toString(String scheme, String opaquePart,
1842:                    String authority, String userInfo, String host, int port,
1843:                    String path, String query, String fragment) {
1844:                StringBuffer sb = new StringBuffer();
1845:                if (scheme != null) {
1846:                    sb.append(scheme);
1847:                    sb.append(':');
1848:                }
1849:                appendSchemeSpecificPart(sb, opaquePart, authority, userInfo,
1850:                        host, port, path, query);
1851:                appendFragment(sb, fragment);
1852:                return sb.toString();
1853:            }
1854:
1855:            private void defineSchemeSpecificPart() {
1856:                if (schemeSpecificPart != null)
1857:                    return;
1858:                StringBuffer sb = new StringBuffer();
1859:                appendSchemeSpecificPart(sb, null, authority, userInfo, host,
1860:                        port, path, query);
1861:                if (sb.length() == 0)
1862:                    return;
1863:                schemeSpecificPart = sb.toString();
1864:            }
1865:
1866:            private void defineString() {
1867:                if (string != null)
1868:                    return;
1869:
1870:                StringBuffer sb = new StringBuffer();
1871:                if (scheme != null) {
1872:                    sb.append(scheme);
1873:                    sb.append(':');
1874:                }
1875:                if (isOpaque()) {
1876:                    sb.append(schemeSpecificPart);
1877:                } else {
1878:                    if (host != null) {
1879:                        sb.append("//");
1880:                        if (userInfo != null) {
1881:                            sb.append(userInfo);
1882:                            sb.append('@');
1883:                        }
1884:                        boolean needBrackets = ((host.indexOf(':') >= 0)
1885:                                && !host.startsWith("[") && !host.endsWith("]"));
1886:                        if (needBrackets)
1887:                            sb.append('[');
1888:                        sb.append(host);
1889:                        if (needBrackets)
1890:                            sb.append(']');
1891:                        if (port != -1) {
1892:                            sb.append(':');
1893:                            sb.append(port);
1894:                        }
1895:                    } else if (authority != null) {
1896:                        sb.append("//");
1897:                        sb.append(authority);
1898:                    }
1899:                    if (path != null)
1900:                        sb.append(path);
1901:                    if (query != null) {
1902:                        sb.append('?');
1903:                        sb.append(query);
1904:                    }
1905:                }
1906:                if (fragment != null) {
1907:                    sb.append('#');
1908:                    sb.append(fragment);
1909:                }
1910:                string = sb.toString();
1911:            }
1912:
1913:            // -- Normalization, resolution, and relativization --
1914:
1915:            // RFC2396 5.2 (6)
1916:            private static String resolvePath(String base, String child,
1917:                    boolean absolute) {
1918:                int i = base.lastIndexOf('/');
1919:                int cn = child.length();
1920:                String path = "";
1921:
1922:                if (cn == 0) {
1923:                    // 5.2 (6a)
1924:                    if (i >= 0)
1925:                        path = base.substring(0, i + 1);
1926:                } else {
1927:                    StringBuffer sb = new StringBuffer(base.length() + cn);
1928:                    // 5.2 (6a)
1929:                    if (i >= 0)
1930:                        sb.append(base.substring(0, i + 1));
1931:                    // 5.2 (6b)
1932:                    sb.append(child);
1933:                    path = sb.toString();
1934:                }
1935:
1936:                // 5.2 (6c-f)
1937:                String np = normalize(path);
1938:
1939:                // 5.2 (6g): If the result is absolute but the path begins with "../",
1940:                // then we simply leave the path as-is
1941:
1942:                return np;
1943:            }
1944:
1945:            // RFC2396 5.2
1946:            private static URI resolve(URI base, URI child) {
1947:                // check if child if opaque first so that NPE is thrown 
1948:                // if child is null.
1949:                if (child.isOpaque() || base.isOpaque())
1950:                    return child;
1951:
1952:                // 5.2 (2): Reference to current document (lone fragment)
1953:                if ((child.scheme == null) && (child.authority == null)
1954:                        && child.path.equals("") && (child.fragment != null)
1955:                        && (child.query == null)) {
1956:                    if ((base.fragment != null)
1957:                            && child.fragment.equals(base.fragment)) {
1958:                        return base;
1959:                    }
1960:                    URI ru = new URI();
1961:                    ru.scheme = base.scheme;
1962:                    ru.authority = base.authority;
1963:                    ru.userInfo = base.userInfo;
1964:                    ru.host = base.host;
1965:                    ru.port = base.port;
1966:                    ru.path = base.path;
1967:                    ru.fragment = child.fragment;
1968:                    ru.query = base.query;
1969:                    return ru;
1970:                }
1971:
1972:                // 5.2 (3): Child is absolute
1973:                if (child.scheme != null)
1974:                    return child;
1975:
1976:                URI ru = new URI(); // Resolved URI
1977:                ru.scheme = base.scheme;
1978:                ru.query = child.query;
1979:                ru.fragment = child.fragment;
1980:
1981:                // 5.2 (4): Authority
1982:                if (child.authority == null) {
1983:                    ru.authority = base.authority;
1984:                    ru.host = base.host;
1985:                    ru.userInfo = base.userInfo;
1986:                    ru.port = base.port;
1987:
1988:                    String cp = (child.path == null) ? "" : child.path;
1989:                    if ((cp.length() > 0) && (cp.charAt(0) == '/')) {
1990:                        // 5.2 (5): Child path is absolute
1991:                        ru.path = child.path;
1992:                    } else {
1993:                        // 5.2 (6): Resolve relative path
1994:                        ru.path = resolvePath(base.path, cp, base.isAbsolute());
1995:                    }
1996:                } else {
1997:                    ru.authority = child.authority;
1998:                    ru.host = child.host;
1999:                    ru.userInfo = child.userInfo;
2000:                    ru.host = child.host;
2001:                    ru.port = child.port;
2002:                    ru.path = child.path;
2003:                }
2004:
2005:                // 5.2 (7): Recombine (nothing to do here)
2006:                return ru;
2007:            }
2008:
2009:            // If the given URI's path is normal then return the URI;
2010:            // o.w., return a new URI containing the normalized path.
2011:            //
2012:            private static URI normalize(URI u) {
2013:                if (u.isOpaque() || (u.path == null) || (u.path.length() == 0))
2014:                    return u;
2015:
2016:                String np = normalize(u.path);
2017:                if (np == u.path)
2018:                    return u;
2019:
2020:                URI v = new URI();
2021:                v.scheme = u.scheme;
2022:                v.fragment = u.fragment;
2023:                v.authority = u.authority;
2024:                v.userInfo = u.userInfo;
2025:                v.host = u.host;
2026:                v.port = u.port;
2027:                v.path = np;
2028:                v.query = u.query;
2029:                return v;
2030:            }
2031:
2032:            // If both URIs are hierarchical, their scheme and authority components are
2033:            // identical, and the base path is a prefix of the child's path, then
2034:            // return a relative URI that, when resolved against the base, yields the
2035:            // child; otherwise, return the child.
2036:            //
2037:            private static URI relativize(URI base, URI child) {
2038:                // check if child if opaque first so that NPE is thrown 
2039:                // if child is null.
2040:                if (child.isOpaque() || base.isOpaque())
2041:                    return child;
2042:                if (!equalIgnoringCase(base.scheme, child.scheme)
2043:                        || !equal(base.authority, child.authority))
2044:                    return child;
2045:
2046:                String bp = normalize(base.path);
2047:                String cp = normalize(child.path);
2048:                if (!bp.equals(cp)) {
2049:                    if (!bp.endsWith("/"))
2050:                        bp = bp + "/";
2051:                    if (!cp.startsWith(bp))
2052:                        return child;
2053:                }
2054:
2055:                URI v = new URI();
2056:                v.path = cp.substring(bp.length());
2057:                v.query = child.query;
2058:                v.fragment = child.fragment;
2059:                return v;
2060:            }
2061:
2062:            // -- Path normalization --
2063:
2064:            // The following algorithm for path normalization avoids the creation of a
2065:            // string object for each segment, as well as the use of a string buffer to
2066:            // compute the final result, by using a single char array and editing it in
2067:            // place.  The array is first split into segments, replacing each slash
2068:            // with '\0' and creating a segment-index array, each element of which is
2069:            // the index of the first char in the corresponding segment.  We then walk
2070:            // through both arrays, removing ".", "..", and other segments as necessary
2071:            // by setting their entries in the index array to -1.  Finally, the two
2072:            // arrays are used to rejoin the segments and compute the final result.
2073:            //
2074:            // This code is based upon src/solaris/native/java/io/canonicalize_md.c
2075:
2076:            // Check the given path to see if it might need normalization.  A path
2077:            // might need normalization if it contains duplicate slashes, a "."
2078:            // segment, or a ".." segment.  Return -1 if no further normalization is
2079:            // possible, otherwise return the number of segments found.
2080:            //
2081:            // This method takes a string argument rather than a char array so that
2082:            // this test can be performed without invoking path.toCharArray().
2083:            //
2084:            static private int needsNormalization(String path) {
2085:                boolean normal = true;
2086:                int ns = 0; // Number of segments
2087:                int end = path.length() - 1; // Index of last char in path
2088:                int p = 0; // Index of next char in path
2089:
2090:                // Skip initial slashes
2091:                while (p <= end) {
2092:                    if (path.charAt(p) != '/')
2093:                        break;
2094:                    p++;
2095:                }
2096:                if (p > 1)
2097:                    normal = false;
2098:
2099:                // Scan segments
2100:                while (p <= end) {
2101:
2102:                    // Looking at "." or ".." ?
2103:                    if ((path.charAt(p) == '.')
2104:                            && ((p == end) || ((path.charAt(p + 1) == '/') || ((path
2105:                                    .charAt(p + 1) == '.') && ((p + 1 == end) || (path
2106:                                    .charAt(p + 2) == '/')))))) {
2107:                        normal = false;
2108:                    }
2109:                    ns++;
2110:
2111:                    // Find beginning of next segment
2112:                    while (p <= end) {
2113:                        if (path.charAt(p++) != '/')
2114:                            continue;
2115:
2116:                        // Skip redundant slashes
2117:                        while (p <= end) {
2118:                            if (path.charAt(p) != '/')
2119:                                break;
2120:                            normal = false;
2121:                            p++;
2122:                        }
2123:
2124:                        break;
2125:                    }
2126:                }
2127:
2128:                return normal ? -1 : ns;
2129:            }
2130:
2131:            // Split the given path into segments, replacing slashes with nulls and
2132:            // filling in the given segment-index array.
2133:            //
2134:            // Preconditions:
2135:            //   segs.length == Number of segments in path
2136:            //
2137:            // Postconditions:
2138:            //   All slashes in path replaced by '\0'
2139:            //   segs[i] == Index of first char in segment i (0 <= i < segs.length)
2140:            //
2141:            static private void split(char[] path, int[] segs) {
2142:                int end = path.length - 1; // Index of last char in path
2143:                int p = 0; // Index of next char in path
2144:                int i = 0; // Index of current segment
2145:
2146:                // Skip initial slashes
2147:                while (p <= end) {
2148:                    if (path[p] != '/')
2149:                        break;
2150:                    path[p] = '\0';
2151:                    p++;
2152:                }
2153:
2154:                while (p <= end) {
2155:
2156:                    // Note start of segment
2157:                    segs[i++] = p++;
2158:
2159:                    // Find beginning of next segment
2160:                    while (p <= end) {
2161:                        if (path[p++] != '/')
2162:                            continue;
2163:                        path[p - 1] = '\0';
2164:
2165:                        // Skip redundant slashes
2166:                        while (p <= end) {
2167:                            if (path[p] != '/')
2168:                                break;
2169:                            path[p++] = '\0';
2170:                        }
2171:                        break;
2172:                    }
2173:                }
2174:
2175:                if (i != segs.length)
2176:                    throw new InternalError(); // ASSERT
2177:            }
2178:
2179:            // Join the segments in the given path according to the given segment-index
2180:            // array, ignoring those segments whose index entries have been set to -1,
2181:            // and inserting slashes as needed.  Return the length of the resulting
2182:            // path.
2183:            //
2184:            // Preconditions:
2185:            //   segs[i] == -1 implies segment i is to be ignored
2186:            //   path computed by split, as above, with '\0' having replaced '/'
2187:            //
2188:            // Postconditions:
2189:            //   path[0] .. path[return value] == Resulting path
2190:            //
2191:            static private int join(char[] path, int[] segs) {
2192:                int ns = segs.length; // Number of segments
2193:                int end = path.length - 1; // Index of last char in path
2194:                int p = 0; // Index of next path char to write
2195:
2196:                if (path[p] == '\0') {
2197:                    // Restore initial slash for absolute paths
2198:                    path[p++] = '/';
2199:                }
2200:
2201:                for (int i = 0; i < ns; i++) {
2202:                    int q = segs[i]; // Current segment
2203:                    if (q == -1)
2204:                        // Ignore this segment
2205:                        continue;
2206:
2207:                    if (p == q) {
2208:                        // We're already at this segment, so just skip to its end
2209:                        while ((p <= end) && (path[p] != '\0'))
2210:                            p++;
2211:                        if (p <= end) {
2212:                            // Preserve trailing slash
2213:                            path[p++] = '/';
2214:                        }
2215:                    } else if (p < q) {
2216:                        // Copy q down to p
2217:                        while ((q <= end) && (path[q] != '\0'))
2218:                            path[p++] = path[q++];
2219:                        if (q <= end) {
2220:                            // Preserve trailing slash
2221:                            path[p++] = '/';
2222:                        }
2223:                    } else
2224:                        throw new InternalError(); // ASSERT false
2225:                }
2226:
2227:                return p;
2228:            }
2229:
2230:            // Remove "." segments from the given path, and remove segment pairs
2231:            // consisting of a non-".." segment followed by a ".." segment.
2232:            //
2233:            private static void removeDots(char[] path, int[] segs) {
2234:                int ns = segs.length;
2235:                int end = path.length - 1;
2236:
2237:                for (int i = 0; i < ns; i++) {
2238:                    int dots = 0; // Number of dots found (0, 1, or 2)
2239:
2240:                    // Find next occurrence of "." or ".."
2241:                    do {
2242:                        int p = segs[i];
2243:                        if (path[p] == '.') {
2244:                            if (p == end) {
2245:                                dots = 1;
2246:                                break;
2247:                            } else if (path[p + 1] == '\0') {
2248:                                dots = 1;
2249:                                break;
2250:                            } else if ((path[p + 1] == '.')
2251:                                    && ((p + 1 == end) || (path[p + 2] == '\0'))) {
2252:                                dots = 2;
2253:                                break;
2254:                            }
2255:                        }
2256:                        i++;
2257:                    } while (i < ns);
2258:                    if ((i > ns) || (dots == 0))
2259:                        break;
2260:
2261:                    if (dots == 1) {
2262:                        // Remove this occurrence of "."
2263:                        segs[i] = -1;
2264:                    } else {
2265:                        // If there is a preceding non-".." segment, remove both that
2266:                        // segment and this occurrence of ".."; otherwise, leave this
2267:                        // ".." segment as-is.
2268:                        int j;
2269:                        for (j = i - 1; j >= 0; j--) {
2270:                            if (segs[j] != -1)
2271:                                break;
2272:                        }
2273:                        if (j >= 0) {
2274:                            int q = segs[j];
2275:                            if (!((path[q] == '.') && (path[q + 1] == '.') && (path[q + 2] == '\0'))) {
2276:                                segs[i] = -1;
2277:                                segs[j] = -1;
2278:                            }
2279:                        }
2280:                    }
2281:                }
2282:            }
2283:
2284:            // DEVIATION: If the normalized path is relative, and if the first
2285:            // segment could be parsed as a scheme name, then prepend a "." segment
2286:            //
2287:            private static void maybeAddLeadingDot(char[] path, int[] segs) {
2288:
2289:                if (path[0] == '\0')
2290:                    // The path is absolute
2291:                    return;
2292:
2293:                int ns = segs.length;
2294:                int f = 0; // Index of first segment
2295:                while (f < ns) {
2296:                    if (segs[f] >= 0)
2297:                        break;
2298:                    f++;
2299:                }
2300:                if ((f >= ns) || (f == 0))
2301:                    // The path is empty, or else the original first segment survived,
2302:                    // in which case we already know that no leading "." is needed
2303:                    return;
2304:
2305:                int p = segs[f];
2306:                while ((p < path.length) && (path[p] != ':')
2307:                        && (path[p] != '\0'))
2308:                    p++;
2309:                if (p >= path.length || path[p] == '\0')
2310:                    // No colon in first segment, so no "." needed
2311:                    return;
2312:
2313:                // At this point we know that the first segment is unused,
2314:                // hence we can insert a "." segment at that position
2315:                path[0] = '.';
2316:                path[1] = '\0';
2317:                segs[0] = 0;
2318:            }
2319:
2320:            // Normalize the given path string.  A normal path string has no empty
2321:            // segments (i.e., occurrences of "//"), no segments equal to ".", and no
2322:            // segments equal to ".." that are preceded by a segment not equal to "..".
2323:            // In contrast to Unix-style pathname normalization, for URI paths we
2324:            // always retain trailing slashes.
2325:            //
2326:            private static String normalize(String ps) {
2327:
2328:                // Does this path need normalization?
2329:                int ns = needsNormalization(ps); // Number of segments
2330:                if (ns < 0)
2331:                    // Nope -- just return it
2332:                    return ps;
2333:
2334:                char[] path = ps.toCharArray(); // Path in char-array form
2335:
2336:                // Split path into segments
2337:                int[] segs = new int[ns]; // Segment-index array
2338:                split(path, segs);
2339:
2340:                // Remove dots
2341:                removeDots(path, segs);
2342:
2343:                // Prevent scheme-name confusion
2344:                maybeAddLeadingDot(path, segs);
2345:
2346:                // Join the remaining segments and return the result
2347:                String s = new String(path, 0, join(path, segs));
2348:                if (s.equals(ps)) {
2349:                    // string was already normalized
2350:                    return ps;
2351:                }
2352:                return s;
2353:            }
2354:
2355:            // -- Character classes for parsing --
2356:
2357:            // RFC2396 precisely specifies which characters in the US-ASCII charset are
2358:            // permissible in the various components of a URI reference.  We here
2359:            // define a set of mask pairs to aid in enforcing these restrictions.  Each
2360:            // mask pair consists of two longs, a low mask and a high mask.  Taken
2361:            // together they represent a 128-bit mask, where bit i is set iff the
2362:            // character with value i is permitted.
2363:            //
2364:            // This approach is more efficient than sequentially searching arrays of
2365:            // permitted characters.  It could be made still more efficient by
2366:            // precompiling the mask information so that a character's presence in a
2367:            // given mask could be determined by a single table lookup.
2368:
2369:            // Compute the low-order mask for the characters in the given string
2370:            private static long lowMask(String chars) {
2371:                int n = chars.length();
2372:                long m = 0;
2373:                for (int i = 0; i < n; i++) {
2374:                    char c = chars.charAt(i);
2375:                    if (c < 64)
2376:                        m |= (1L << c);
2377:                }
2378:                return m;
2379:            }
2380:
2381:            // Compute the high-order mask for the characters in the given string
2382:            private static long highMask(String chars) {
2383:                int n = chars.length();
2384:                long m = 0;
2385:                for (int i = 0; i < n; i++) {
2386:                    char c = chars.charAt(i);
2387:                    if ((c >= 64) && (c < 128))
2388:                        m |= (1L << (c - 64));
2389:                }
2390:                return m;
2391:            }
2392:
2393:            // Compute a low-order mask for the characters
2394:            // between first and last, inclusive
2395:            private static long lowMask(char first, char last) {
2396:                long m = 0;
2397:                int f = Math.max(Math.min(first, 63), 0);
2398:                int l = Math.max(Math.min(last, 63), 0);
2399:                for (int i = f; i <= l; i++)
2400:                    m |= 1L << i;
2401:                return m;
2402:            }
2403:
2404:            // Compute a high-order mask for the characters
2405:            // between first and last, inclusive
2406:            private static long highMask(char first, char last) {
2407:                long m = 0;
2408:                int f = Math.max(Math.min(first, 127), 64) - 64;
2409:                int l = Math.max(Math.min(last, 127), 64) - 64;
2410:                for (int i = f; i <= l; i++)
2411:                    m |= 1L << i;
2412:                return m;
2413:            }
2414:
2415:            // Tell whether the given character is permitted by the given mask pair
2416:            private static boolean match(char c, long lowMask, long highMask) {
2417:                if (c < 64)
2418:                    return ((1L << c) & lowMask) != 0;
2419:                if (c < 128)
2420:                    return ((1L << (c - 64)) & highMask) != 0;
2421:                return false;
2422:            }
2423:
2424:            // Character-class masks, in reverse order from RFC2396 because
2425:            // initializers for static fields cannot make forward references.
2426:
2427:            // digit    = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
2428:            //            "8" | "9"
2429:            private static final long L_DIGIT = lowMask('0', '9');
2430:            private static final long H_DIGIT = 0L;
2431:
2432:            // upalpha  = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
2433:            //            "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
2434:            //            "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
2435:            private static final long L_UPALPHA = 0L;
2436:            private static final long H_UPALPHA = highMask('A', 'Z');
2437:
2438:            // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
2439:            //            "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
2440:            //            "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
2441:            private static final long L_LOWALPHA = 0L;
2442:            private static final long H_LOWALPHA = highMask('a', 'z');
2443:
2444:            // alpha         = lowalpha | upalpha
2445:            private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA;
2446:            private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA;
2447:
2448:            // alphanum      = alpha | digit
2449:            private static final long L_ALPHANUM = L_DIGIT | L_ALPHA;
2450:            private static final long H_ALPHANUM = H_DIGIT | H_ALPHA;
2451:
2452:            // hex           = digit | "A" | "B" | "C" | "D" | "E" | "F" |
2453:            //                         "a" | "b" | "c" | "d" | "e" | "f"
2454:            private static final long L_HEX = L_DIGIT;
2455:            private static final long H_HEX = highMask('A', 'F')
2456:                    | highMask('a', 'f');
2457:
2458:            // mark          = "-" | "_" | "." | "!" | "~" | "*" | "'" |
2459:            //                 "(" | ")"
2460:            private static final long L_MARK = lowMask("-_.!~*'()");
2461:            private static final long H_MARK = highMask("-_.!~*'()");
2462:
2463:            // unreserved    = alphanum | mark
2464:            private static final long L_UNRESERVED = L_ALPHANUM | L_MARK;
2465:            private static final long H_UNRESERVED = H_ALPHANUM | H_MARK;
2466:
2467:            // reserved      = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
2468:            //                 "$" | "," | "[" | "]"
2469:            // Added per RFC2732: "[", "]"
2470:            private static final long L_RESERVED = lowMask(";/?:@&=+$,[]");
2471:            private static final long H_RESERVED = highMask(";/?:@&=+$,[]");
2472:
2473:            // The zero'th bit is used to indicate that escape pairs and non-US-ASCII
2474:            // characters are allowed; this is handled by the scanEscape method below.
2475:            private static final long L_ESCAPED = 1L;
2476:            private static final long H_ESCAPED = 0L;
2477:
2478:            // uric          = reserved | unreserved | escaped
2479:            private static final long L_URIC = L_RESERVED | L_UNRESERVED
2480:                    | L_ESCAPED;
2481:            private static final long H_URIC = H_RESERVED | H_UNRESERVED
2482:                    | H_ESCAPED;
2483:
2484:            // pchar         = unreserved | escaped |
2485:            //                 ":" | "@" | "&" | "=" | "+" | "$" | ","
2486:            private static final long L_PCHAR = L_UNRESERVED | L_ESCAPED
2487:                    | lowMask(":@&=+$,");
2488:            private static final long H_PCHAR = H_UNRESERVED | H_ESCAPED
2489:                    | highMask(":@&=+$,");
2490:
2491:            // All valid path characters
2492:            private static final long L_PATH = L_PCHAR | lowMask(";/");
2493:            private static final long H_PATH = H_PCHAR | highMask(";/");
2494:
2495:            // Dash, for use in domainlabel and toplabel
2496:            private static final long L_DASH = lowMask("-");
2497:            private static final long H_DASH = highMask("-");
2498:
2499:            // Dot, for use in hostnames
2500:            private static final long L_DOT = lowMask(".");
2501:            private static final long H_DOT = highMask(".");
2502:
2503:            // userinfo      = *( unreserved | escaped |
2504:            //                    ";" | ":" | "&" | "=" | "+" | "$" | "," )
2505:            private static final long L_USERINFO = L_UNRESERVED | L_ESCAPED
2506:                    | lowMask(";:&=+$,");
2507:            private static final long H_USERINFO = H_UNRESERVED | H_ESCAPED
2508:                    | highMask(";:&=+$,");
2509:
2510:            // reg_name      = 1*( unreserved | escaped | "$" | "," |
2511:            //                     ";" | ":" | "@" | "&" | "=" | "+" )
2512:            private static final long L_REG_NAME = L_UNRESERVED | L_ESCAPED
2513:                    | lowMask("$,;:@&=+");
2514:            private static final long H_REG_NAME = H_UNRESERVED | H_ESCAPED
2515:                    | highMask("$,;:@&=+");
2516:
2517:            // All valid characters for server-based authorities
2518:            private static final long L_SERVER = L_USERINFO | L_ALPHANUM
2519:                    | L_DASH | lowMask(".:@[]");
2520:            private static final long H_SERVER = H_USERINFO | H_ALPHANUM
2521:                    | H_DASH | highMask(".:@[]");
2522:
2523:            // scheme        = alpha *( alpha | digit | "+" | "-" | "." )
2524:            private static final long L_SCHEME = L_ALPHA | L_DIGIT
2525:                    | lowMask("+-.");
2526:            private static final long H_SCHEME = H_ALPHA | H_DIGIT
2527:                    | highMask("+-.");
2528:
2529:            // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
2530:            //                 "&" | "=" | "+" | "$" | ","
2531:            private static final long L_URIC_NO_SLASH = L_UNRESERVED
2532:                    | L_ESCAPED | lowMask(";?:@&=+$,");
2533:            private static final long H_URIC_NO_SLASH = H_UNRESERVED
2534:                    | H_ESCAPED | highMask(";?:@&=+$,");
2535:
2536:            // -- Escaping and encoding --
2537:
2538:            private final static char[] hexDigits = { '0', '1', '2', '3', '4',
2539:                    '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
2540:
2541:            private static void appendEscape(StringBuffer sb, byte b) {
2542:                sb.append('%');
2543:                sb.append(hexDigits[(b >> 4) & 0x0f]);
2544:                sb.append(hexDigits[(b >> 0) & 0x0f]);
2545:            }
2546:
2547:            private static void appendEncoded(StringBuffer sb, char c) {
2548:                try {
2549:                    String str = "" + c;
2550:                    byte bbuf[] = str.getBytes("UTF-8");
2551:                    for (int i = 0; i < bbuf.length; i++) {
2552:                        int b = bbuf[i] & 0xff;
2553:                        if (b >= 0x80)
2554:                            appendEscape(sb, (byte) b);
2555:                        else
2556:                            sb.append((char) b);
2557:                    }
2558:                } catch (UnsupportedEncodingException ex) {
2559:                    if (sun.misc.BuildFlags.qAssertsEnabled)
2560:                        assert false;
2561:                }
2562:            }
2563:
2564:            // Quote any characters in s that are not permitted
2565:            // by the given mask pair
2566:            //
2567:            private static String quote(String s, long lowMask, long highMask) {
2568:                int n = s.length();
2569:                StringBuffer sb = null;
2570:                boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0);
2571:                for (int i = 0; i < s.length(); i++) {
2572:                    char c = s.charAt(i);
2573:                    if (c < '\u0080') {
2574:                        if (!match(c, lowMask, highMask)) {
2575:                            if (sb == null) {
2576:                                sb = new StringBuffer();
2577:                                sb.append(s.substring(0, i));
2578:                            }
2579:                            appendEscape(sb, (byte) c);
2580:                        } else {
2581:                            if (sb != null)
2582:                                sb.append(c);
2583:                        }
2584:                    } else if (allowNonASCII
2585:                            && (Character.isSpaceChar(c) || Character
2586:                                    .isISOControl(c))) {
2587:                        if (sb == null) {
2588:                            sb = new StringBuffer();
2589:                            sb.append(s.substring(0, i));
2590:                        }
2591:                        appendEncoded(sb, c);
2592:                    } else {
2593:                        if (sb != null)
2594:                            sb.append(c);
2595:                    }
2596:                }
2597:                return (sb == null) ? s : sb.toString();
2598:            }
2599:
2600:            // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets,
2601:            // assuming that s is otherwise legal
2602:            //
2603:            private static String encode(String s) {
2604:                int n = s.length();
2605:                if (n == 0)
2606:                    return s;
2607:
2608:                // First check whether we actually need to encode
2609:                for (int i = 0;;) {
2610:                    if (s.charAt(i) >= '\u0080')
2611:                        break;
2612:                    if (++i >= n)
2613:                        return s;
2614:                }
2615:
2616:                String ns = Normalizer.normalize(s, Normalizer.COMPOSE, 0);
2617:                StringBuffer sb = new StringBuffer();
2618:                try {
2619:                    byte bbuf[] = ns.getBytes("UTF-8");
2620:                    for (int i = 0; i < bbuf.length; i++) {
2621:                        int b = bbuf[i] & 0xff;
2622:                        if (b >= 0x80)
2623:                            appendEscape(sb, (byte) b);
2624:                        else
2625:                            sb.append((char) b);
2626:                    }
2627:                } catch (UnsupportedEncodingException e) {
2628:                    if (sun.misc.BuildFlags.qAssertsEnabled)
2629:                        assert false;
2630:                }
2631:                return sb.toString();
2632:            }
2633:
2634:            private static int decode(char c) {
2635:                if ((c >= '0') && (c <= '9'))
2636:                    return c - '0';
2637:                if ((c >= 'a') && (c <= 'f'))
2638:                    return c - 'a' + 10;
2639:                if ((c >= 'A') && (c <= 'F'))
2640:                    return c - 'A' + 10;
2641:                if (sun.misc.BuildFlags.qAssertsEnabled)
2642:                    assert false;
2643:                return -1;
2644:            }
2645:
2646:            private static byte decode(char c1, char c2) {
2647:                return (byte) (((decode(c1) & 0xf) << 4) | ((decode(c2) & 0xf) << 0));
2648:            }
2649:
2650:            // Evaluates all escapes in s, applying UTF-8 decoding if needed.  Assumes
2651:            // that escapes are well-formed syntactically, i.e., of the form %XX.  If a
2652:            // sequence of escaped octets is not valid UTF-8 then the erroneous octets
2653:            // are replaced with '\uFFFD'.
2654:            //
2655:            private static String decode(String s) {
2656:                if (s == null)
2657:                    return s;
2658:                int n = s.length();
2659:                if (n == 0)
2660:                    return s;
2661:                if (s.indexOf('%') < 0)
2662:                    return s;
2663:
2664:                StringBuffer sb = new StringBuffer(n);
2665:                byte bb[] = new byte[n];
2666:                char cb[] = new char[n];
2667:                /* we are not handling the error in decoding rightnow.
2668:                       CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8")
2669:                       .onMalformedInput(CodingErrorAction.REPLACE)
2670:                       .onUnmappableCharacter(CodingErrorAction.REPLACE);
2671:                 */
2672:                // This is not horribly efficient, but it will do for now
2673:                char c = s.charAt(0);
2674:                for (int i = 0; i < n;) {
2675:                    if (sun.misc.BuildFlags.qAssertsEnabled)
2676:                        assert c == s.charAt(i); // Loop invariant
2677:                    if (c != '%') {
2678:                        sb.append(c);
2679:                        if (++i >= n)
2680:                            break;
2681:                        c = s.charAt(i);
2682:                        continue;
2683:                    }
2684:                    int j = 0;
2685:                    for (;;) {
2686:                        if (sun.misc.BuildFlags.qAssertsEnabled)
2687:                            assert (n - i >= 2);
2688:                        bb[j] = decode(s.charAt(++i), s.charAt(++i));
2689:                        if (++i >= n)
2690:                            break;
2691:                        c = s.charAt(i);
2692:                        if (c != '%')
2693:                            break;
2694:                        ++j;
2695:
2696:                    }
2697:                    try {
2698:                        String str = new String(bb, 0, j + 1, "UTF-8");
2699:                        cb = str.toCharArray();
2700:                        sb.append(str);
2701:                    } catch (UnsupportedEncodingException e) {
2702:                        if (sun.misc.BuildFlags.qAssertsEnabled)
2703:                            assert false;
2704:                    }
2705:                }
2706:                return sb.toString();
2707:            }
2708:
2709:            // -- Parsing --
2710:
2711:            // For convenience we wrap the input URI string in a new instance of the
2712:            // following internal class.  This saves always having to pass the input
2713:            // string as an argument to each internal scan/parse method.
2714:
2715:            private class Parser {
2716:
2717:                private String input; // URI input string
2718:                private boolean requireServerAuthority = false;
2719:
2720:                Parser(String s) {
2721:                    input = s;
2722:                    string = s;
2723:                }
2724:
2725:                // -- Methods for throwing URISyntaxException in various ways --
2726:
2727:                private void fail(String reason) throws URISyntaxException {
2728:                    throw new URISyntaxException(input, reason);
2729:                }
2730:
2731:                private void fail(String reason, int p)
2732:                        throws URISyntaxException {
2733:                    throw new URISyntaxException(input, reason, p);
2734:                }
2735:
2736:                private void failExpecting(String expected, int p)
2737:                        throws URISyntaxException {
2738:                    fail("Expected " + expected, p);
2739:                }
2740:
2741:                private void failExpecting(String expected, String prior, int p)
2742:                        throws URISyntaxException {
2743:                    fail("Expected " + expected + " following " + prior, p);
2744:                }
2745:
2746:                // -- Simple access to the input string --
2747:
2748:                // Return a substring of the input string
2749:                //
2750:                private String substring(int start, int end) {
2751:                    return input.substring(start, end);
2752:                }
2753:
2754:                // Return the char at position p,
2755:                // assuming that p < input.length()
2756:                //
2757:                private char charAt(int p) {
2758:                    return input.charAt(p);
2759:                }
2760:
2761:                // Tells whether start < end and, if so, whether charAt(start) == c
2762:                //
2763:                private boolean at(int start, int end, char c) {
2764:                    return (start < end) && (charAt(start) == c);
2765:                }
2766:
2767:                // Tells whether start + s.length() < end and, if so,
2768:                // whether the chars at the start position match s exactly
2769:                //
2770:                private boolean at(int start, int end, String s) {
2771:                    int p = start;
2772:                    int sn = s.length();
2773:                    if (sn > end - p)
2774:                        return false;
2775:                    int i = 0;
2776:                    while (i < sn) {
2777:                        if (charAt(p++) != s.charAt(i)) {
2778:                            break;
2779:                        }
2780:                        i++;
2781:                    }
2782:                    return (i == sn);
2783:                }
2784:
2785:                // -- Scanning --
2786:
2787:                // The various scan and parse methods that follow use a uniform
2788:                // convention of taking the current start position and end index as
2789:                // their first two arguments.  The start is inclusive while the end is
2790:                // exclusive, just as in the String class, i.e., a start/end pair
2791:                // denotes the left-open interval [start, end) of the input string.
2792:                //
2793:                // These methods never proceed past the end position.  They may return
2794:                // -1 to indicate outright failure, but more often they simply return
2795:                // the position of the first char after the last char scanned.  Thus
2796:                // a typical idiom is
2797:                //
2798:                //     int p = start;
2799:                //     int q = scan(p, end, ...);
2800:                //     if (q > p)
2801:                //         // We scanned something
2802:                //         ...;
2803:                //     else if (q == p)
2804:                //         // We scanned nothing
2805:                //         ...;
2806:                //     else if (q == -1)
2807:                //         // Something went wrong
2808:                //         ...;
2809:
2810:                // Scan a specific char: If the char at the given start position is
2811:                // equal to c, return the index of the next char; otherwise, return the
2812:                // start position.
2813:                //
2814:                private int scan(int start, int end, char c) {
2815:                    if ((start < end) && (charAt(start) == c))
2816:                        return start + 1;
2817:                    return start;
2818:                }
2819:
2820:                // Scan forward from the given start position.  Stop at the first char
2821:                // in the err string (in which case -1 is returned), or the first char
2822:                // in the stop string (in which case the index of the preceding char is
2823:                // returned), or the end of the input string (in which case the length
2824:                // of the input string is returned).  May return the start position if
2825:                // nothing matches.
2826:                //
2827:                private int scan(int start, int end, String err, String stop) {
2828:                    int p = start;
2829:                    while (p < end) {
2830:                        char c = charAt(p);
2831:                        if (err.indexOf(c) >= 0)
2832:                            return -1;
2833:                        if (stop.indexOf(c) >= 0)
2834:                            break;
2835:                        p++;
2836:                    }
2837:                    return p;
2838:                }
2839:
2840:                // Scan a potential escape sequence, starting at the given position,
2841:                // with the given first char (i.e., charAt(start) == c).
2842:                //
2843:                // This method assumes that if escapes are allowed then visible
2844:                // non-US-ASCII chars are also allowed.
2845:                //
2846:                private int scanEscape(int start, int n, char first)
2847:                        throws URISyntaxException {
2848:                    int p = start;
2849:                    char c = first;
2850:                    if (c == '%') {
2851:                        // Process escape pair
2852:                        if ((p + 3 <= n) && match(charAt(p + 1), L_HEX, H_HEX)
2853:                                && match(charAt(p + 2), L_HEX, H_HEX)) {
2854:                            return p + 3;
2855:                        }
2856:                        fail("Malformed escape pair", p);
2857:                    } else if ((c > 128) && !Character.isSpaceChar(c)
2858:                            && !Character.isISOControl(c)) {
2859:                        // Allow unescaped but visible non-US-ASCII chars
2860:                        return p + 1;
2861:                    }
2862:                    return p;
2863:                }
2864:
2865:                // Scan chars that match the given mask pair
2866:                //
2867:                private int scan(int start, int n, long lowMask, long highMask)
2868:                        throws URISyntaxException {
2869:                    int p = start;
2870:                    while (p < n) {
2871:                        char c = charAt(p);
2872:                        if (match(c, lowMask, highMask)) {
2873:                            p++;
2874:                            continue;
2875:                        }
2876:                        if ((lowMask & L_ESCAPED) != 0) {
2877:                            int q = scanEscape(p, n, c);
2878:                            if (q > p) {
2879:                                p = q;
2880:                                continue;
2881:                            }
2882:                        }
2883:                        break;
2884:                    }
2885:                    return p;
2886:                }
2887:
2888:                // Check that each of the chars in [start, end) matches the given mask
2889:                //
2890:                private void checkChars(int start, int end, long lowMask,
2891:                        long highMask, String what) throws URISyntaxException {
2892:                    int p = scan(start, end, lowMask, highMask);
2893:                    if (p < end)
2894:                        fail("Illegal character in " + what, p);
2895:                }
2896:
2897:                // Check that the char at position p matches the given mask
2898:                //
2899:                private void checkChar(int p, long lowMask, long highMask,
2900:                        String what) throws URISyntaxException {
2901:                    checkChars(p, p + 1, lowMask, highMask, what);
2902:                }
2903:
2904:                // -- Parsing --
2905:
2906:                // [<scheme>:]<scheme-specific-part>[#<fragment>]
2907:                //
2908:                void parse(boolean rsa) throws URISyntaxException {
2909:                    requireServerAuthority = rsa;
2910:                    int ssp; // Start of scheme-specific part
2911:                    int n = input.length();
2912:                    int p = scan(0, n, "/?#", ":");
2913:                    if ((p >= 0) && at(p, n, ':')) {
2914:                        if (p == 0)
2915:                            failExpecting("scheme name", 0);
2916:                        checkChar(0, L_ALPHA, H_ALPHA, "scheme name");
2917:                        checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name");
2918:                        scheme = substring(0, p);
2919:                        p++; // Skip ':'
2920:                        ssp = p;
2921:                        if (at(p, n, '/')) {
2922:                            p = parseHierarchical(p, n);
2923:                        } else {
2924:                            int q = scan(p, n, "", "#");
2925:                            if (q <= p)
2926:                                failExpecting("scheme-specific part", p);
2927:                            checkChars(p, q, L_URIC, H_URIC, "opaque part");
2928:                            p = q;
2929:                        }
2930:                    } else {
2931:                        ssp = 0;
2932:                        p = parseHierarchical(0, n);
2933:                    }
2934:                    schemeSpecificPart = substring(ssp, p);
2935:                    if (at(p, n, '#')) {
2936:                        checkChars(p + 1, n, L_URIC, H_URIC, "fragment");
2937:                        fragment = substring(p + 1, n);
2938:                        p = n;
2939:                    }
2940:                    if (p < n)
2941:                        fail("end of URI", p);
2942:                }
2943:
2944:                // [//authority]<path>[?<query>]
2945:                //
2946:                // DEVIATION from RFC2396: We allow an empty authority component as
2947:                // long as it's followed by a non-empty path, query component, or
2948:                // fragment component.  This is so that URIs such as "file:///foo/bar"
2949:                // will parse.  This seems to be the intent of RFC2396, though the
2950:                // grammar does not permit it.  If the authority is empty then the
2951:                // userInfo, host, and port components are undefined.
2952:                //
2953:                // DEVIATION from RFC2396: We allow empty relative paths.  This seems
2954:                // to be the intent of RFC2396, but the grammar does not permit it.
2955:                // The primary consequence of this deviation is that "#f" parses as a
2956:                // relative URI with an empty path.
2957:                //
2958:                private int parseHierarchical(int start, int n)
2959:                        throws URISyntaxException {
2960:                    int p = start;
2961:                    if (at(p, n, '/') && at(p + 1, n, '/')) {
2962:                        p += 2;
2963:                        int q = scan(p, n, "", "/?#");
2964:                        if (q > p) {
2965:                            p = parseAuthority(p, q);
2966:                        } else if (q < n) {
2967:                            // DEVIATION: Allow empty authority prior to non-empty 
2968:                            // path, query component or fragment identifier
2969:                        } else
2970:                            failExpecting("authority", p);
2971:                    }
2972:                    int q = scan(p, n, "", "?#"); // DEVIATION: May be empty
2973:                    checkChars(p, q, L_PATH, H_PATH, "path");
2974:                    path = substring(p, q);
2975:                    p = q;
2976:                    if (at(p, n, '?')) {
2977:                        p++;
2978:                        q = scan(p, n, "", "#");
2979:                        checkChars(p, q, L_URIC, H_URIC, "query");
2980:                        query = substring(p, q);
2981:                        p = q;
2982:                    }
2983:                    return p;
2984:                }
2985:
2986:                // authority     = server | reg_name
2987:                //
2988:                // Ambiguity: An authority that is a registry name rather than a server
2989:                // might have a prefix that parses as a server.  We use the fact that
2990:                // the authority component is always followed by '/' or the end of the
2991:                // input string to resolve this: If the complete authority did not
2992:                // parse as a server then we try to parse it as a registry name.
2993:                //
2994:                private int parseAuthority(int start, int n)
2995:                        throws URISyntaxException {
2996:                    int p = start;
2997:                    int q = p;
2998:                    URISyntaxException ex = null;
2999:
3000:                    boolean serverChars = (scan(p, n, L_SERVER, H_SERVER) == n);
3001:                    boolean regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n);
3002:
3003:                    if (regChars && !serverChars) {
3004:                        // Must be a registry-based authority
3005:                        authority = substring(p, n);
3006:                        return n;
3007:                    }
3008:
3009:                    if (serverChars) {
3010:                        // Might be (probably is) a server-based authority, so attempt
3011:                        // to parse it as such.  If the attempt fails, try to treat it
3012:                        // as a registry-based authority.
3013:                        try {
3014:                            q = parseServer(p, n);
3015:                            if (q < n)
3016:                                failExpecting("end of authority", q);
3017:                            authority = substring(p, n);
3018:                        } catch (URISyntaxException x) {
3019:                            // Undo results of failed parse
3020:                            userInfo = null;
3021:                            host = null;
3022:                            port = -1;
3023:                            if (requireServerAuthority) {
3024:                                // If we're insisting upon a server-based authority,
3025:                                // then just re-throw the exception
3026:                                throw x;
3027:                            } else {
3028:                                // Save the exception in case it doesn't parse as a
3029:                                // registry either
3030:                                ex = x;
3031:                                q = p;
3032:                            }
3033:                        }
3034:                    }
3035:
3036:                    if (q < n) {
3037:                        if (regChars) {
3038:                            // Registry-based authority
3039:                            authority = substring(p, n);
3040:                        } else if (ex != null) {
3041:                            // Re-throw exception; it was probably due to
3042:                            // a malformed IPv6 address
3043:                            throw ex;
3044:                        } else {
3045:                            fail("Illegal character in authority", q);
3046:                        }
3047:                    }
3048:
3049:                    return n;
3050:                }
3051:
3052:                // [<userinfo>@]<host>[:<port>]
3053:                //
3054:                private int parseServer(int start, int n)
3055:                        throws URISyntaxException {
3056:                    int p = start;
3057:                    int q;
3058:
3059:                    // userinfo
3060:                    q = scan(p, n, "/?#", "@");
3061:                    if ((q >= p) && at(q, n, '@')) {
3062:                        checkChars(p, q, L_USERINFO, H_USERINFO, "user info");
3063:                        userInfo = substring(p, q);
3064:                        p = q + 1; // Skip '@'
3065:                    }
3066:
3067:                    // hostname, IPv4 address, or IPv6 address
3068:                    if (at(p, n, '[')) {
3069:                        // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732
3070:                        p++;
3071:                        q = scan(p, n, "/?#", "]");
3072:                        if ((q > p) && at(q, n, ']')) {
3073:                            parseIPv6Reference(p, q);
3074:                            p = q + 1;
3075:                        } else {
3076:                            failExpecting("closing bracket for IPv6 address", q);
3077:                        }
3078:                    } else {
3079:                        q = parseIPv4Address(p, n);
3080:                        if (q <= p)
3081:                            q = parseHostname(p, n);
3082:                        p = q;
3083:                    }
3084:
3085:                    // port
3086:                    if (at(p, n, ':')) {
3087:                        p++;
3088:                        q = scan(p, n, "", "/");
3089:                        if (q > p) {
3090:                            checkChars(p, q, L_DIGIT, H_DIGIT, "port number");
3091:                            try {
3092:                                port = Integer.parseInt(substring(p, q));
3093:                            } catch (NumberFormatException x) {
3094:                                fail("Malformed port number", p);
3095:                            }
3096:                            p = q;
3097:                        }
3098:                    }
3099:                    if (p < n)
3100:                        failExpecting("port number", p);
3101:
3102:                    return p;
3103:                }
3104:
3105:                // Scan a string of decimal digits whose value fits in a byte
3106:                //
3107:                private int scanByte(int start, int n)
3108:                        throws URISyntaxException {
3109:                    int p = start;
3110:                    int q = scan(p, n, L_DIGIT, H_DIGIT);
3111:                    if (q <= p)
3112:                        return q;
3113:                    if (Integer.parseInt(substring(p, q)) > 255)
3114:                        return p;
3115:                    return q;
3116:                }
3117:
3118:                // Scan an IPv4 address.
3119:                //
3120:                // If the strict argument is true then we require that the given
3121:                // interval contain nothing besides an IPv4 address; if it is false
3122:                // then we only require that it start with an IPv4 address.
3123:                //
3124:                // If the interval does not contain or start with (depending upon the
3125:                // strict argument) a legal IPv4 address characters then we return -1
3126:                // immediately; otherwise we insist that these characters parse as a
3127:                // legal IPv4 address and throw an exception on failure.
3128:                //
3129:                // We assume that any string of decimal digits and dots must be an IPv4
3130:                // address.  It won't parse as a hostname anyway, so making that
3131:                // assumption here allows more meaningful exceptions to be thrown.
3132:                //
3133:                private int scanIPv4Address(int start, int n, boolean strict)
3134:                        throws URISyntaxException {
3135:                    int p = start;
3136:                    int q;
3137:                    int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT);
3138:                    if ((m <= p) || (strict && (m != n)))
3139:                        return -1;
3140:                    for (;;) {
3141:                        // Per RFC2732: At most three digits per byte
3142:                        // Further constraint: Each element fits in a byte
3143:                        if ((q = scanByte(p, m)) <= p)
3144:                            break;
3145:                        p = q;
3146:                        if ((q = scan(p, m, '.')) <= p)
3147:                            break;
3148:                        p = q;
3149:                        if ((q = scanByte(p, m)) <= p)
3150:                            break;
3151:                        p = q;
3152:                        if ((q = scan(p, m, '.')) <= p)
3153:                            break;
3154:                        p = q;
3155:                        if ((q = scanByte(p, m)) <= p)
3156:                            break;
3157:                        p = q;
3158:                        if ((q = scan(p, m, '.')) <= p)
3159:                            break;
3160:                        p = q;
3161:                        if ((q = scanByte(p, m)) <= p)
3162:                            break;
3163:                        p = q;
3164:                        if (q < m)
3165:                            break;
3166:                        return q;
3167:                    }
3168:                    fail("Malformed IPv4 address", q);
3169:                    return -1;
3170:                }
3171:
3172:                // Take an IPv4 address: Throw an exception if the given interval
3173:                // contains anything except an IPv4 address
3174:                //
3175:                private int takeIPv4Address(int start, int n, String expected)
3176:                        throws URISyntaxException {
3177:                    int p = scanIPv4Address(start, n, true);
3178:                    if (p <= start)
3179:                        failExpecting(expected, start);
3180:                    return p;
3181:                }
3182:
3183:                // Attempt to parse an IPv4 address, returning -1 on failure but
3184:                // allowing the given interval to contain [:<characters>] after
3185:                // the IPv4 address.
3186:                //
3187:                private int parseIPv4Address(int start, int n) {
3188:                    int p;
3189:
3190:                    try {
3191:                        p = scanIPv4Address(start, n, false);
3192:                    } catch (URISyntaxException x) {
3193:                        return -1;
3194:                    } catch (NumberFormatException nfe) {
3195:                        return -1;
3196:                    }
3197:
3198:                    if (p > start && p < n) {
3199:                        // IPv4 address is followed by something - check that
3200:                        // it's a ":" as this is the only valid character to
3201:                        // follow an address.
3202:                        if (charAt(p) != ':') {
3203:                            p = -1;
3204:                        }
3205:                    }
3206:
3207:                    if (p > start)
3208:                        host = substring(start, p);
3209:
3210:                    return p;
3211:                }
3212:
3213:                // hostname      = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ] 
3214:                // domainlabel   = alphanum | alphanum *( alphanum | "-" ) alphanum
3215:                // toplabel      = alpha | alpha *( alphanum | "-" ) alphanum
3216:                //
3217:                private int parseHostname(int start, int n)
3218:                        throws URISyntaxException {
3219:                    int p = start;
3220:                    int q;
3221:                    int l = -1; // Start of last parsed label
3222:
3223:                    do {
3224:                        // domainlabel = alphanum [ *( alphanum | "-" ) alphanum ]
3225:                        q = scan(p, n, L_ALPHANUM, H_ALPHANUM);
3226:                        if (q <= p)
3227:                            break;
3228:                        l = p;
3229:                        if (q > p) {
3230:                            p = q;
3231:                            q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM
3232:                                    | H_DASH);
3233:                            if (q > p) {
3234:                                if (charAt(q - 1) == '-')
3235:                                    fail("Illegal character in hostname", q - 1);
3236:                                p = q;
3237:                            }
3238:                        }
3239:                        q = scan(p, n, '.');
3240:                        if (q <= p)
3241:                            break;
3242:                        p = q;
3243:                    } while (p < n);
3244:
3245:                    if ((p < n) && !at(p, n, ':'))
3246:                        fail("Illegal character in hostname", p);
3247:
3248:                    if (l < 0)
3249:                        failExpecting("hostname", start);
3250:
3251:                    // for a fully qualified hostname check that the rightmost
3252:                    // label starts with an alpha character.
3253:                    if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) {
3254:                        fail("Illegal character in hostname", l);
3255:                    }
3256:
3257:                    host = substring(start, p);
3258:                    return p;
3259:                }
3260:
3261:                // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture
3262:                //
3263:                // Bug: The grammar in RFC2373 Appendix B does not allow addresses of
3264:                // the form ::12.34.56.78, which are clearly shown in the examples
3265:                // earlier in the document.  Here is the original grammar:
3266:                //
3267:                //   IPv6address = hexpart [ ":" IPv4address ]
3268:                //   hexpart     = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ]
3269:                //   hexseq      = hex4 *( ":" hex4)
3270:                //   hex4        = 1*4HEXDIG
3271:                //
3272:                // We therefore use the following revised grammar:
3273:                //
3274:                //   IPv6address = hexseq [ ":" IPv4address ]
3275:                //                 | hexseq [ "::" [ hexpost ] ]
3276:                //                 | "::" [ hexpost ]
3277:                //   hexpost     = hexseq | hexseq ":" IPv4address | IPv4address
3278:                //   hexseq      = hex4 *( ":" hex4)
3279:                //   hex4        = 1*4HEXDIG
3280:                //
3281:                // This covers all and only the following cases:
3282:                //
3283:                //   hexseq
3284:                //   hexseq : IPv4address
3285:                //   hexseq ::
3286:                //   hexseq :: hexseq
3287:                //   hexseq :: hexseq : IPv4address
3288:                //   hexseq :: IPv4address
3289:                //   :: hexseq
3290:                //   :: hexseq : IPv4address
3291:                //   :: IPv4address
3292:                //   ::
3293:                //
3294:                // Additionally we constrain the IPv6 address as follows :-
3295:                //
3296:                //  i.  IPv6 addresses without compressed zeros should contain
3297:                //      exactly 16 bytes.
3298:                //
3299:                //  ii. IPv6 addresses with compressed zeros should contain
3300:                //      less than 16 bytes.
3301:
3302:                private int ipv6byteCount = 0;
3303:
3304:                private int parseIPv6Reference(int start, int n)
3305:                        throws URISyntaxException {
3306:                    int p = start;
3307:                    int q;
3308:                    boolean compressedZeros = false;
3309:
3310:                    q = scanHexSeq(p, n);
3311:
3312:                    if (q > p) {
3313:                        p = q;
3314:                        if (at(p, n, "::")) {
3315:                            compressedZeros = true;
3316:                            p = scanHexPost(p + 2, n);
3317:                        } else if (at(p, n, ':')) {
3318:                            p = takeIPv4Address(p + 1, n, "IPv4 address");
3319:                            ipv6byteCount += 4;
3320:                        }
3321:                    } else if (at(p, n, "::")) {
3322:                        compressedZeros = true;
3323:                        p = scanHexPost(p + 2, n);
3324:                    }
3325:                    if (p < n)
3326:                        fail("Malformed IPv6 address", start);
3327:                    if (ipv6byteCount > 16)
3328:                        fail("IPv6 address too long", start);
3329:                    if (!compressedZeros && ipv6byteCount < 16)
3330:                        fail("IPv6 address too short", start);
3331:                    if (compressedZeros && ipv6byteCount == 16)
3332:                        fail("Malformed IPv6 address", start);
3333:
3334:                    host = substring(start - 1, p + 1);
3335:                    return p;
3336:                }
3337:
3338:                private int scanHexPost(int start, int n)
3339:                        throws URISyntaxException {
3340:                    int p = start;
3341:                    int q;
3342:
3343:                    if (p == n)
3344:                        return p;
3345:
3346:                    q = scanHexSeq(p, n);
3347:                    if (q > p) {
3348:                        p = q;
3349:                        if (at(p, n, ':')) {
3350:                            p++;
3351:                            p = takeIPv4Address(p, n,
3352:                                    "hex digits or IPv4 address");
3353:                            ipv6byteCount += 4;
3354:                        }
3355:                    } else {
3356:                        p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3357:                        ipv6byteCount += 4;
3358:                    }
3359:                    return p;
3360:                }
3361:
3362:                // Scan a hex sequence; return -1 if one could not be scanned
3363:                //
3364:                private int scanHexSeq(int start, int n)
3365:                        throws URISyntaxException {
3366:                    int p = start;
3367:                    int q;
3368:
3369:                    q = scan(p, n, L_HEX, H_HEX);
3370:                    if (q <= p)
3371:                        return -1;
3372:                    if (at(q, n, '.')) // Beginning of IPv4 address
3373:                        return -1;
3374:                    if (q > p + 4)
3375:                        fail("IPv6 hexadecimal digit sequence too long", p);
3376:                    ipv6byteCount += 2;
3377:                    p = q;
3378:                    while (p < n) {
3379:                        if (!at(p, n, ':'))
3380:                            break;
3381:                        if (at(p + 1, n, ':'))
3382:                            break; // "::"
3383:                        p++;
3384:                        q = scan(p, n, L_HEX, H_HEX);
3385:                        if (q <= p)
3386:                            failExpecting("digits for an IPv6 address", p);
3387:                        if (at(q, n, '.')) { // Beginning of IPv4 address
3388:                            p--;
3389:                            break;
3390:                        }
3391:                        if (q > p + 4)
3392:                            fail("IPv6 hexadecimal digit sequence too long", p);
3393:                        ipv6byteCount += 2;
3394:                        p = q;
3395:                    }
3396:
3397:                    return p;
3398:                }
3399:
3400:            }
3401:
3402:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.