Java Doc for Arrays.java in  » 6.0-JDK-Modules » j2me » java » util » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » j2me » java.util 
Source Cross Reference  Class Diagram Java Document (Java Doc) 


java.lang.Object
   java.util.Arrays

Arrays
public class Arrays (Code)
This class contains various methods for manipulating arrays (such as sorting and searching). This class also contains a static factory that allows arrays to be viewed as lists.

The methods in this class all throw a NullPointerException if the specified array reference is null.

The documentation for the methods contained in this class includes briefs description of the implementations. Such descriptions should be regarded as implementation notes, rather than parts of the specification. Implementors should feel free to substitute other algorithms, so long as the specification itself is adhered to. (For example, the algorithm used by sort(Object[]) does not have to be a mergesort, but it does have to be stable.)

This class is a member of the Java Collections Framework.
author:
   Josh Bloch
version:
   1.44, 10/10/06
See Also:   Comparable
See Also:   Comparator
since:
   1.2





Method Summary
public static  ListasList(Object[] a)
     Returns a fixed-size list backed by the specified array.
public static  intbinarySearch(long[] a, long key)
     Searches the specified array of longs for the specified value using the binary search algorithm.
public static  intbinarySearch(int[] a, int key)
     Searches the specified array of ints for the specified value using the binary search algorithm.
public static  intbinarySearch(short[] a, short key)
     Searches the specified array of shorts for the specified value using the binary search algorithm.
public static  intbinarySearch(char[] a, char key)
     Searches the specified array of chars for the specified value using the binary search algorithm.
public static  intbinarySearch(byte[] a, byte key)
     Searches the specified array of bytes for the specified value using the binary search algorithm.
public static  intbinarySearch(double[] a, double key)
     Searches the specified array of doubles for the specified value using the binary search algorithm.
public static  intbinarySearch(float[] a, float key)
     Searches the specified array of floats for the specified value using the binary search algorithm.
public static  intbinarySearch(Object[] a, Object key)
     Searches the specified array for the specified object using the binary search algorithm.
public static  intbinarySearch(Object[] a, Object key, Comparator c)
     Searches the specified array for the specified object using the binary search algorithm.
public static  booleanequals(long[] a, long[] a2)
     Returns true if the two specified arrays of longs are equal to one another.
public static  booleanequals(int[] a, int[] a2)
     Returns true if the two specified arrays of ints are equal to one another.
public static  booleanequals(short[] a, short a2)
     Returns true if the two specified arrays of shorts are equal to one another.
public static  booleanequals(char[] a, char[] a2)
     Returns true if the two specified arrays of chars are equal to one another.
public static  booleanequals(byte[] a, byte[] a2)
     Returns true if the two specified arrays of bytes are equal to one another.
public static  booleanequals(boolean[] a, boolean[] a2)
     Returns true if the two specified arrays of booleans are equal to one another.
public static  booleanequals(double[] a, double[] a2)
     Returns true if the two specified arrays of doubles are equal to one another.
public static  booleanequals(float[] a, float[] a2)
     Returns true if the two specified arrays of floats are equal to one another.
public static  booleanequals(Object[] a, Object[] a2)
     Returns true if the two specified arrays of Objects are equal to one another.
public static  voidfill(long[] a, long val)
     Assigns the specified long value to each element of the specified array of longs.
public static  voidfill(long[] a, int fromIndex, int toIndex, long val)
     Assigns the specified long value to each element of the specified range of the specified array of longs.
public static  voidfill(int[] a, int val)
     Assigns the specified int value to each element of the specified array of ints.
public static  voidfill(int[] a, int fromIndex, int toIndex, int val)
     Assigns the specified int value to each element of the specified range of the specified array of ints.
public static  voidfill(short[] a, short val)
     Assigns the specified short value to each element of the specified array of shorts.
public static  voidfill(short[] a, int fromIndex, int toIndex, short val)
     Assigns the specified short value to each element of the specified range of the specified array of shorts.
public static  voidfill(char[] a, char val)
     Assigns the specified char value to each element of the specified array of chars.
public static  voidfill(char[] a, int fromIndex, int toIndex, char val)
     Assigns the specified char value to each element of the specified range of the specified array of chars.
public static  voidfill(byte[] a, byte val)
     Assigns the specified byte value to each element of the specified array of bytes.
public static  voidfill(byte[] a, int fromIndex, int toIndex, byte val)
     Assigns the specified byte value to each element of the specified range of the specified array of bytes.
public static  voidfill(boolean[] a, boolean val)
     Assigns the specified boolean value to each element of the specified array of booleans.
public static  voidfill(boolean[] a, int fromIndex, int toIndex, boolean val)
     Assigns the specified boolean value to each element of the specified range of the specified array of booleans.
public static  voidfill(double[] a, double val)
     Assigns the specified double value to each element of the specified array of doubles.
public static  voidfill(double[] a, int fromIndex, int toIndex, double val)
     Assigns the specified double value to each element of the specified range of the specified array of doubles.
public static  voidfill(float[] a, float val)
     Assigns the specified float value to each element of the specified array of floats.
public static  voidfill(float[] a, int fromIndex, int toIndex, float val)
     Assigns the specified float value to each element of the specified range of the specified array of floats.
public static  voidfill(Object[] a, Object val)
     Assigns the specified Object reference to each element of the specified array of Objects.
public static  voidfill(Object[] a, int fromIndex, int toIndex, Object val)
     Assigns the specified Object reference to each element of the specified range of the specified array of Objects.
public static  voidsort(long[] a)
     Sorts the specified array of longs into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L.
public static  voidsort(long[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of longs into ascending numerical order.
public static  voidsort(int[] a)
     Sorts the specified array of ints into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L.
public static  voidsort(int[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of ints into ascending numerical order.
public static  voidsort(short[] a)
     Sorts the specified array of shorts into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L.
public static  voidsort(short[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of shorts into ascending numerical order.
public static  voidsort(char[] a)
     Sorts the specified array of chars into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L.
public static  voidsort(char[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of chars into ascending numerical order.
public static  voidsort(byte[] a)
     Sorts the specified array of bytes into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L.
public static  voidsort(byte[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of bytes into ascending numerical order.
public static  voidsort(double[] a)
     Sorts the specified array of doubles into ascending numerical order.

The < relation does not provide a total order on all floating-point values; although they are distinct numbers -0.0 == 0.0 is true and a NaN value compares neither less than, greater than, nor equal to any floating-point value, even itself.

public static  voidsort(double[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of doubles into ascending numerical order.
public static  voidsort(float[] a)
     Sorts the specified array of floats into ascending numerical order.

The < relation does not provide a total order on all floating-point values; although they are distinct numbers -0.0f == 0.0f is true and a NaN value compares neither less than, greater than, nor equal to any floating-point value, even itself.

public static  voidsort(float[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of floats into ascending numerical order.
public static  voidsort(Object[] a)
     Sorts the specified array of objects into ascending order, according to the natural ordering of its elements.
public static  voidsort(Object[] a, int fromIndex, int toIndex)
     Sorts the specified range of the specified array of objects into ascending order, according to the natural ordering of its elements.
public static  voidsort(Object[] a, Comparator c)
     Sorts the specified array of objects according to the order induced by the specified comparator.
public static  voidsort(Object[] a, int fromIndex, int toIndex, Comparator c)
     Sorts the specified range of the specified array of objects according to the order induced by the specified comparator.



Method Detail
asList
public static List asList(Object[] a)(Code)
Returns a fixed-size list backed by the specified array. (Changes to the returned list "write through" to the array.) This method acts as bridge between array-based and collection-based APIs, in combination with Collection.toArray. The returned list is serializable and implements RandomAccess .
Parameters:
  a - the array by which the list will be backed. a list view of the specified array.
See Also:   Collection.toArray



binarySearch
public static int binarySearch(long[] a, long key)(Code)
Searches the specified array of longs for the specified value using the binary search algorithm. The array must be sorted (as by the sort method, above) prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements with the specified value, there is no guarantee which one will be found.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
See Also:   Arrays.sort(long[])



binarySearch
public static int binarySearch(int[] a, int key)(Code)
Searches the specified array of ints for the specified value using the binary search algorithm. The array must be sorted (as by the sort method, above) prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements with the specified value, there is no guarantee which one will be found.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
See Also:   Arrays.sort(int[])



binarySearch
public static int binarySearch(short[] a, short key)(Code)
Searches the specified array of shorts for the specified value using the binary search algorithm. The array must be sorted (as by the sort method, above) prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements with the specified value, there is no guarantee which one will be found.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
See Also:   Arrays.sort(short[])



binarySearch
public static int binarySearch(char[] a, char key)(Code)
Searches the specified array of chars for the specified value using the binary search algorithm. The array must be sorted (as by the sort method, above) prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements with the specified value, there is no guarantee which one will be found.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
See Also:   Arrays.sort(char[])



binarySearch
public static int binarySearch(byte[] a, byte key)(Code)
Searches the specified array of bytes for the specified value using the binary search algorithm. The array must be sorted (as by the sort method, above) prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements with the specified value, there is no guarantee which one will be found.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
See Also:   Arrays.sort(byte[])



binarySearch
public static int binarySearch(double[] a, double key)(Code)
Searches the specified array of doubles for the specified value using the binary search algorithm. The array must be sorted (as by the sort method, above) prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements with the specified value, there is no guarantee which one will be found. This method considers all NaN values to be equivalent and equal.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
See Also:   Arrays.sort(double[])



binarySearch
public static int binarySearch(float[] a, float key)(Code)
Searches the specified array of floats for the specified value using the binary search algorithm. The array must be sorted (as by the sort method, above) prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements with the specified value, there is no guarantee which one will be found. This method considers all NaN values to be equivalent and equal.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
See Also:   Arrays.sort(float[])



binarySearch
public static int binarySearch(Object[] a, Object key)(Code)
Searches the specified array for the specified object using the binary search algorithm. The array must be sorted into ascending order according to the natural ordering of its elements (as by Sort(Object[]), above) prior to making this call. If it is not sorted, the results are undefined. (If the array contains elements that are not mutually comparable (for example,strings and integers), it cannot be sorted according to the natural order of its elements, hence results are undefined.) If the array contains multiple elements equal to the specified object, there is no guarantee which one will be found.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
throws:
  ClassCastException - if the search key in not comparable to theelements of the array.
See Also:   Comparable
See Also:   Arrays.sort(Object[])



binarySearch
public static int binarySearch(Object[] a, Object key, Comparator c)(Code)
Searches the specified array for the specified object using the binary search algorithm. The array must be sorted into ascending order according to the specified comparator (as by the Sort(Object[], Comparator) method, above), prior to making this call. If it is not sorted, the results are undefined. If the array contains multiple elements equal to the specified object, there is no guarantee which one will be found.
Parameters:
  a - the array to be searched.
Parameters:
  key - the value to be searched for.
Parameters:
  c - the comparator by which the array is ordered. Anull value indicates that the elements' naturalordering should be used. index of the search key, if it is contained in the list;otherwise, (-(insertion point) - 1). Theinsertion point is defined as the point at which thekey would be inserted into the list: the index of the firstelement greater than the key, or list.size(), if allelements in the list are less than the specified key. Notethat this guarantees that the return value will be >= 0 ifand only if the key is found.
throws:
  ClassCastException - if the array contains elements that are notmutually comparable using the specified comparator,or the search key in not mutually comparable with theelements of the array using this comparator.
See Also:   Comparable
See Also:   Arrays.sort(Object[],Comparator)



equals
public static boolean equals(long[] a, long[] a2)(Code)
Returns true if the two specified arrays of longs are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.


Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.




equals
public static boolean equals(int[] a, int[] a2)(Code)
Returns true if the two specified arrays of ints are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.


Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.




equals
public static boolean equals(short[] a, short a2)(Code)
Returns true if the two specified arrays of shorts are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.


Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.




equals
public static boolean equals(char[] a, char[] a2)(Code)
Returns true if the two specified arrays of chars are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.


Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.




equals
public static boolean equals(byte[] a, byte[] a2)(Code)
Returns true if the two specified arrays of bytes are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.


Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.




equals
public static boolean equals(boolean[] a, boolean[] a2)(Code)
Returns true if the two specified arrays of booleans are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.


Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.




equals
public static boolean equals(double[] a, double[] a2)(Code)
Returns true if the two specified arrays of doubles are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.

Two doubles d1 and d2 are considered equal if:

    new Double(d1).equals(new Double(d2))
(Unlike the == operator, this method considers NaN equals to itself, and 0.0d unequal to -0.0d.)
Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.
See Also:   Double.equals(Object)



equals
public static boolean equals(float[] a, float[] a2)(Code)
Returns true if the two specified arrays of floats are equal to one another. Two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. In other words, two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.

Two floats f1 and f2 are considered equal if:

    new Float(f1).equals(new Float(f2))
(Unlike the == operator, this method considers NaN equals to itself, and 0.0f unequal to -0.0f.)
Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.
See Also:   Float.equals(Object)



equals
public static boolean equals(Object[] a, Object[] a2)(Code)
Returns true if the two specified arrays of Objects are equal to one another. The two arrays are considered equal if both arrays contain the same number of elements, and all corresponding pairs of elements in the two arrays are equal. Two objects e1 and e2 are considered equal if (e1==null ? e2==null : e1.equals(e2)). In other words, the two arrays are equal if they contain the same elements in the same order. Also, two array references are considered equal if both are null.


Parameters:
  a - one array to be tested for equality.
Parameters:
  a2 - the other array to be tested for equality. true if the two arrays are equal.




fill
public static void fill(long[] a, long val)(Code)
Assigns the specified long value to each element of the specified array of longs.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(long[] a, int fromIndex, int toIndex, long val)(Code)
Assigns the specified long value to each element of the specified range of the specified array of longs. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(int[] a, int val)(Code)
Assigns the specified int value to each element of the specified array of ints.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(int[] a, int fromIndex, int toIndex, int val)(Code)
Assigns the specified int value to each element of the specified range of the specified array of ints. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(short[] a, short val)(Code)
Assigns the specified short value to each element of the specified array of shorts.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(short[] a, int fromIndex, int toIndex, short val)(Code)
Assigns the specified short value to each element of the specified range of the specified array of shorts. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(char[] a, char val)(Code)
Assigns the specified char value to each element of the specified array of chars.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(char[] a, int fromIndex, int toIndex, char val)(Code)
Assigns the specified char value to each element of the specified range of the specified array of chars. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(byte[] a, byte val)(Code)
Assigns the specified byte value to each element of the specified array of bytes.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(byte[] a, int fromIndex, int toIndex, byte val)(Code)
Assigns the specified byte value to each element of the specified range of the specified array of bytes. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(boolean[] a, boolean val)(Code)
Assigns the specified boolean value to each element of the specified array of booleans.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val)(Code)
Assigns the specified boolean value to each element of the specified range of the specified array of booleans. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(double[] a, double val)(Code)
Assigns the specified double value to each element of the specified array of doubles.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(double[] a, int fromIndex, int toIndex, double val)(Code)
Assigns the specified double value to each element of the specified range of the specified array of doubles. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(float[] a, float val)(Code)
Assigns the specified float value to each element of the specified array of floats.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(float[] a, int fromIndex, int toIndex, float val)(Code)
Assigns the specified float value to each element of the specified range of the specified array of floats. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



fill
public static void fill(Object[] a, Object val)(Code)
Assigns the specified Object reference to each element of the specified array of Objects.
Parameters:
  a - the array to be filled.
Parameters:
  val - the value to be stored in all elements of the array.



fill
public static void fill(Object[] a, int fromIndex, int toIndex, Object val)(Code)
Assigns the specified Object reference to each element of the specified range of the specified array of Objects. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
Parameters:
  a - the array to be filled.
Parameters:
  fromIndex - the index of the first element (inclusive) to befilled with the specified value.
Parameters:
  toIndex - the index of the last element (exclusive) to befilled with the specified value.
Parameters:
  val - the value to be stored in all elements of the array.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length



sort
public static void sort(long[] a)(Code)
Sorts the specified array of longs into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.



sort
public static void sort(long[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of longs into ascending numerical order. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.)

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length




sort
public static void sort(int[] a)(Code)
Sorts the specified array of ints into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.



sort
public static void sort(int[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of ints into ascending numerical order. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.)

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length




sort
public static void sort(short[] a)(Code)
Sorts the specified array of shorts into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.



sort
public static void sort(short[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of shorts into ascending numerical order. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.)

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length




sort
public static void sort(char[] a)(Code)
Sorts the specified array of chars into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.



sort
public static void sort(char[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of chars into ascending numerical order. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.)

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length




sort
public static void sort(byte[] a)(Code)
Sorts the specified array of bytes into ascending numerical order. The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.



sort
public static void sort(byte[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of bytes into ascending numerical order. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.)

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length




sort
public static void sort(double[] a)(Code)
Sorts the specified array of doubles into ascending numerical order.

The < relation does not provide a total order on all floating-point values; although they are distinct numbers -0.0 == 0.0 is true and a NaN value compares neither less than, greater than, nor equal to any floating-point value, even itself. To allow the sort to proceed, instead of using the < relation to determine ascending numerical order, this method uses the total order imposed by Double.compareTo . This ordering differs from the < relation in that -0.0 is treated as less than 0.0 and NaN is considered greater than any other floating-point value. For the purposes of sorting, all NaN values are considered equivalent and equal.

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.




sort
public static void sort(double[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of doubles into ascending numerical order. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.)

The < relation does not provide a total order on all floating-point values; although they are distinct numbers -0.0 == 0.0 is true and a NaN value compares neither less than, greater than, nor equal to any floating-point value, even itself. To allow the sort to proceed, instead of using the < relation to determine ascending numerical order, this method uses the total order imposed by Double.compareTo . This ordering differs from the < relation in that -0.0 is treated as less than 0.0 and NaN is considered greater than any other floating-point value. For the purposes of sorting, all NaN values are considered equivalent and equal.

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length




sort
public static void sort(float[] a)(Code)
Sorts the specified array of floats into ascending numerical order.

The < relation does not provide a total order on all floating-point values; although they are distinct numbers -0.0f == 0.0f is true and a NaN value compares neither less than, greater than, nor equal to any floating-point value, even itself. To allow the sort to proceed, instead of using the < relation to determine ascending numerical order, this method uses the total order imposed by Float.compareTo . This ordering differs from the < relation in that -0.0f is treated as less than 0.0f and NaN is considered greater than any other floating-point value. For the purposes of sorting, all NaN values are considered equivalent and equal.

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.




sort
public static void sort(float[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of floats into ascending numerical order. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.)

The < relation does not provide a total order on all floating-point values; although they are distinct numbers -0.0f == 0.0f is true and a NaN value compares neither less than, greater than, nor equal to any floating-point value, even itself. To allow the sort to proceed, instead of using the < relation to determine ascending numerical order, this method uses the total order imposed by Float.compareTo . This ordering differs from the < relation in that -0.0f is treated as less than 0.0f and NaN is considered greater than any other floating-point value. For the purposes of sorting, all NaN values are considered equivalent and equal.

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length




sort
public static void sort(Object[] a)(Code)
Sorts the specified array of objects into ascending order, according to the natural ordering of its elements. All elements in the array must implement the Comparable interface. Furthermore, all elements in the array must be mutually comparable (that is, e1.compareTo(e2) must not throw a ClassCastException for any elements e1 and e2 in the array).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.

The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
Parameters:
  a - the array to be sorted.
throws:
  ClassCastException - if the array contains elements that are notmutually comparable (for example, strings and integers).
See Also:   Comparable




sort
public static void sort(Object[] a, int fromIndex, int toIndex)(Code)
Sorts the specified range of the specified array of objects into ascending order, according to the natural ordering of its elements. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.) All elements in this range must implement the Comparable interface. Furthermore, all elements in this range must be mutually comparable (that is, e1.compareTo(e2) must not throw a ClassCastException for any elements e1 and e2 in the array).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.

The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length
throws:
  ClassCastException - if the array contains elements that arenot mutually comparable (for example, strings andintegers).
See Also:   Comparable




sort
public static void sort(Object[] a, Comparator c)(Code)
Sorts the specified array of objects according to the order induced by the specified comparator. All elements in the array must be mutually comparable by the specified comparator (that is, c.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the array).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.

The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
Parameters:
  a - the array to be sorted.
Parameters:
  c - the comparator to determine the order of the array. Anull value indicates that the elements' naturalordering should be used.
throws:
  ClassCastException - if the array contains elements that arenot mutually comparable using the specified comparator.
See Also:   Comparator




sort
public static void sort(Object[] a, int fromIndex, int toIndex, Comparator c)(Code)
Sorts the specified range of the specified array of objects according to the order induced by the specified comparator. The range to be sorted extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be sorted is empty.) All elements in the range must be mutually comparable by the specified comparator (that is, c.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the range).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.

The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
Parameters:
  a - the array to be sorted.
Parameters:
  fromIndex - the index of the first element (inclusive) to besorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
Parameters:
  c - the comparator to determine the order of the array. Anull value indicates that the elements' naturalordering should be used.
throws:
  ClassCastException - if the array contains elements that are notmutually comparable using the specified comparator.
throws:
  IllegalArgumentException - if fromIndex > toIndex
throws:
  ArrayIndexOutOfBoundsException - if fromIndex < 0 ortoIndex > a.length
See Also:   Comparator




Methods inherited from java.lang.Object
public boolean equals(Object obj)(Code)(Java Doc)
final native public Class getClass()(Code)(Java Doc)
native public int hashCode()(Code)(Java Doc)
final native public void notify()(Code)(Java Doc)
final native public void notifyAll()(Code)(Java Doc)
public String toString()(Code)(Java Doc)
final native public void wait(long timeout) throws InterruptedException(Code)(Java Doc)
final public void wait(long timeout, int nanos) throws InterruptedException(Code)(Java Doc)
final public void wait() throws InterruptedException(Code)(Java Doc)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.