Source Code Cross Referenced for BufferOp.java in  » GIS » jts » com » vividsolutions » jts » operation » buffer » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » jts » com.vividsolutions.jts.operation.buffer 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * The JTS Topology Suite is a collection of Java classes that
003:         * implement the fundamental operations required to validate a given
004:         * geo-spatial data set to a known topological specification.
005:         *
006:         * Copyright (C) 2001 Vivid Solutions
007:         *
008:         * This library is free software; you can redistribute it and/or
009:         * modify it under the terms of the GNU Lesser General Public
010:         * License as published by the Free Software Foundation; either
011:         * version 2.1 of the License, or (at your option) any later version.
012:         *
013:         * This library is distributed in the hope that it will be useful,
014:         * but WITHOUT ANY WARRANTY; without even the implied warranty of
015:         * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
016:         * Lesser General Public License for more details.
017:         *
018:         * You should have received a copy of the GNU Lesser General Public
019:         * License along with this library; if not, write to the Free Software
020:         * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
021:         *
022:         * For more information, contact:
023:         *
024:         *     Vivid Solutions
025:         *     Suite #1A
026:         *     2328 Government Street
027:         *     Victoria BC  V8T 5G5
028:         *     Canada
029:         *
030:         *     (250)385-6040
031:         *     www.vividsolutions.com
032:         */
033:        package com.vividsolutions.jts.operation.buffer;
034:
035:        /**
036:         * @version 1.7
037:         */
038:        import com.vividsolutions.jts.geom.*;
039:        import com.vividsolutions.jts.precision.SimpleGeometryPrecisionReducer;
040:        import com.vividsolutions.jts.noding.*;
041:        import com.vividsolutions.jts.noding.snapround.*;
042:
043:        //import debug.*;
044:
045:        /**
046:         * Computes the buffer of a geometry, for both positive and negative buffer distances.
047:         * <p>
048:         * In GIS, the positive buffer of a geometry is defined as
049:         * the Minkowski sum or difference of the geometry
050:         * with a circle of radius equal to the absolute value of the buffer distance.
051:         * In the CAD/CAM world buffers are known as </i>offset curves</i>.
052:         * In morphological analysis they are known as <i>erosion</i> and <i>dilation</i>
053:         * <p>
054:         * The negative buffer of lines and points is always empty geometry.
055:         * <p>
056:         * Since true buffer curves may contain circular arcs,
057:         * computed buffer polygons can only be approximations to the true geometry.
058:         * The user can control the accuracy of the curve approximation by specifying
059:         * the number of linear segments used to approximate curves.
060:         * <p>
061:         * The <b>end cap style</b> of a linear buffer may be specified. The
062:         * following end cap styles are supported:
063:         * <ul
064:         * <li>{@link #CAP_ROUND} - the usual round end caps
065:         * <li>{@link #CAP_BUTT} - end caps are truncated flat at the line ends
066:         * <li>{@link #CAP_SQUARE} - end caps are squared off at the buffer distance beyond the line ends
067:         * </ul>
068:         * <p>
069:         *
070:         * @version 1.7
071:         */
072:        public class BufferOp {
073:            /**
074:             * Specifies a round line buffer end cap style.
075:             */
076:            public static final int CAP_ROUND = 1;
077:            /**
078:             * Specifies a butt (or flat) line buffer end cap style.
079:             */
080:            public static final int CAP_BUTT = 2;
081:            /**
082:             * Specifies a square line buffer end cap style.
083:             */
084:            public static final int CAP_SQUARE = 3;
085:
086:            private static int MAX_PRECISION_DIGITS = 12;
087:
088:            /**
089:             * Compute a scale factor to limit the precision of
090:             * a given combination of Geometry and buffer distance.
091:             * The scale factor is determined by a combination of
092:             * the number of digits of precision in the (geometry + buffer distance),
093:             * limited by the supplied <code>maxPrecisionDigits</code> value.
094:             *
095:             * @param g the Geometry being buffered
096:             * @param distance the buffer distance
097:             * @param maxPrecisionDigits the max # of digits that should be allowed by
098:             *          the precision determined by the computed scale factor
099:             *
100:             * @return a scale factor for the buffer computation
101:             */
102:            private static double precisionScaleFactor(Geometry g,
103:                    double distance, int maxPrecisionDigits) {
104:                Envelope env = g.getEnvelopeInternal();
105:                double envSize = Math.max(env.getHeight(), env.getWidth());
106:                double expandByDistance = distance > 0.0 ? distance : 0.0;
107:                double bufEnvSize = envSize + 2 * expandByDistance;
108:
109:                // the smallest power of 10 greater than the buffer envelope
110:                int bufEnvLog10 = (int) (Math.log(bufEnvSize) / Math.log(10) + 1.0);
111:                int minUnitLog10 = bufEnvLog10 - maxPrecisionDigits;
112:                // scale factor is inverse of min Unit size, so flip sign of exponent
113:                double scaleFactor = Math.pow(10.0, -minUnitLog10);
114:                return scaleFactor;
115:            }
116:
117:            /**
118:             * Computes the buffer of a geometry for a given buffer distance.
119:             *
120:             * @param g the geometry to buffer
121:             * @param distance the buffer distance
122:             * @return the buffer of the input geometry
123:             */
124:            public static Geometry bufferOp(Geometry g, double distance) {
125:                BufferOp gBuf = new BufferOp(g);
126:                Geometry geomBuf = gBuf.getResultGeometry(distance);
127:                //BufferDebug.saveBuffer(geomBuf);
128:                //BufferDebug.runCount++;
129:                return geomBuf;
130:            }
131:
132:            /**
133:             * Comutes the buffer for a geometry for a given buffer distance
134:             * and accuracy of approximation.
135:             *
136:             * @param g the geometry to buffer
137:             * @param distance the buffer distance
138:             * @param quadrantSegments the number of segments used to approximate a quarter circle
139:             * @return the buffer of the input geometry
140:             *
141:             */
142:            public static Geometry bufferOp(Geometry g, double distance,
143:                    int quadrantSegments) {
144:                BufferOp bufOp = new BufferOp(g);
145:                bufOp.setQuadrantSegments(quadrantSegments);
146:                Geometry geomBuf = bufOp.getResultGeometry(distance);
147:                return geomBuf;
148:            }
149:
150:            /**
151:             * Comutes the buffer for a geometry for a given buffer distance
152:             * and accuracy of approximation.
153:             *
154:             * @param g the geometry to buffer
155:             * @param distance the buffer distance
156:             * @param quadrantSegments the number of segments used to approximate a quarter circle
157:             * @param endCapStyle the end cap style to use
158:             * @return the buffer of the input geometry
159:             *
160:             */
161:            public static Geometry bufferOp(Geometry g, double distance,
162:                    int quadrantSegments, int endCapStyle) {
163:                BufferOp bufOp = new BufferOp(g);
164:                bufOp.setQuadrantSegments(quadrantSegments);
165:                bufOp.setEndCapStyle(endCapStyle);
166:                Geometry geomBuf = bufOp.getResultGeometry(distance);
167:                return geomBuf;
168:            }
169:
170:            private Geometry argGeom;
171:            private double distance;
172:            private int quadrantSegments = OffsetCurveBuilder.DEFAULT_QUADRANT_SEGMENTS;
173:            private int endCapStyle = BufferOp.CAP_ROUND;
174:
175:            private Geometry resultGeometry = null;
176:            private RuntimeException saveException; // debugging only
177:
178:            /**
179:             * Initializes a buffer computation for the given geometry
180:             *
181:             * @param g the geometry to buffer
182:             */
183:            public BufferOp(Geometry g) {
184:                argGeom = g;
185:            }
186:
187:            /**
188:             * Specifies the end cap style of the generated buffer.
189:             * The styles supported are {@link #CAP_ROUND}, {@link #CAP_BUTT}, and {@link #CAP_SQUARE}.
190:             * The default is CAP_ROUND.
191:             *
192:             * @param endCapStyle the end cap style to specify
193:             */
194:            public void setEndCapStyle(int endCapStyle) {
195:                this .endCapStyle = endCapStyle;
196:            }
197:
198:            /**
199:             * Sets the number of segments used to approximate a angle fillet
200:             *
201:             * @param quadrantSegments the number of segments in a fillet for a quadrant
202:             */
203:            public void setQuadrantSegments(int quadrantSegments) {
204:                this .quadrantSegments = quadrantSegments;
205:            }
206:
207:            /**
208:             * Returns the buffer computed for a geometry for a given buffer distance.
209:             *
210:             * @param distance the buffer distance
211:             * @return the buffer of the input geometry
212:             */
213:            public Geometry getResultGeometry(double distance) {
214:                this .distance = distance;
215:                computeGeometry();
216:                return resultGeometry;
217:            }
218:
219:            private void computeGeometry() {
220:                bufferOriginalPrecision();
221:                if (resultGeometry != null)
222:                    return;
223:
224:                PrecisionModel argPM = argGeom.getFactory().getPrecisionModel();
225:                if (argPM.getType() == PrecisionModel.FIXED)
226:                    bufferFixedPrecision(argPM);
227:                else
228:                    bufferReducedPrecision();
229:            }
230:
231:            private void bufferReducedPrecision() {
232:                // try and compute with decreasing precision
233:                for (int precDigits = MAX_PRECISION_DIGITS; precDigits >= 0; precDigits--) {
234:                    try {
235:                        bufferReducedPrecision(precDigits);
236:                    } catch (TopologyException ex) {
237:                        saveException = ex;
238:                        // don't propagate the exception - it will be detected by fact that resultGeometry is null
239:                    }
240:                    if (resultGeometry != null)
241:                        return;
242:                }
243:
244:                // tried everything - have to bail
245:                throw saveException;
246:            }
247:
248:            private void bufferOriginalPrecision() {
249:                try {
250:                    // use fast noding by default
251:                    BufferBuilder bufBuilder = new BufferBuilder();
252:                    bufBuilder.setQuadrantSegments(quadrantSegments);
253:                    bufBuilder.setEndCapStyle(endCapStyle);
254:                    resultGeometry = bufBuilder.buffer(argGeom, distance);
255:                } catch (RuntimeException ex) {
256:                    saveException = ex;
257:                    // don't propagate the exception - it will be detected by fact that resultGeometry is null
258:
259:                    // testing - propagate exception
260:                    //throw ex;
261:                }
262:            }
263:
264:            private void bufferReducedPrecision(int precisionDigits) {
265:                double sizeBasedScaleFactor = precisionScaleFactor(argGeom,
266:                        distance, precisionDigits);
267:                //    System.out.println("recomputing with precision scale factor = " + sizeBasedScaleFactor);
268:
269:                PrecisionModel fixedPM = new PrecisionModel(
270:                        sizeBasedScaleFactor);
271:                bufferFixedPrecision(fixedPM);
272:            }
273:
274:            private void bufferFixedPrecision(PrecisionModel fixedPM) {
275:                Noder noder = new ScaledNoder(new MCIndexSnapRounder(
276:                        new PrecisionModel(1.0)), fixedPM.getScale());
277:
278:                BufferBuilder bufBuilder = new BufferBuilder();
279:                bufBuilder.setWorkingPrecisionModel(fixedPM);
280:                bufBuilder.setNoder(noder);
281:                bufBuilder.setQuadrantSegments(quadrantSegments);
282:                bufBuilder.setEndCapStyle(endCapStyle);
283:                // this may throw an exception, if robustness errors are encountered
284:                resultGeometry = bufBuilder.buffer(argGeom, distance);
285:            }
286:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.