Source Code Cross Referenced for ConcurrentHashMap.java in  » J2EE » wicket » wicket » util » concurrent » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » J2EE » wicket » wicket.util.concurrent 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         File: ConcurrentHashMap
0003:
0004:         Written by Doug Lea. Adapted and released, under explicit
0005:         permission, from JDK1.2 HashMap.java and Hashtable.java which
0006:         carries the following copyright:
0007:
0008:         * Copyright 1997 by Sun Microsystems, Inc.,
0009:         * 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
0010:         * All rights reserved.
0011:         *
0012:         * This software is the confidential and proprietary information
0013:         * of Sun Microsystems, Inc. ("Confidential Information").  You
0014:         * shall not disclose such Confidential Information and shall use
0015:         * it only in accordance with the terms of the license agreement
0016:         * you entered into with Sun.
0017:
0018:         History:
0019:         Date       Who                What
0020:         26nov2000  dl               Created, based on ConcurrentReaderHashMap
0021:         12jan2001  dl               public release
0022:         17nov2001  dl               Minor tunings
0023:         24oct2003  dl               Segment implements Serializable
0024:         */
0025:
0026:        package wicket.util.concurrent;
0027:
0028:        import java.io.IOException;
0029:        import java.io.Serializable;
0030:        import java.util.AbstractCollection;
0031:        import java.util.AbstractMap;
0032:        import java.util.AbstractSet;
0033:        import java.util.Collection;
0034:        import java.util.Enumeration;
0035:        import java.util.Iterator;
0036:        import java.util.Map;
0037:        import java.util.NoSuchElementException;
0038:        import java.util.Set;
0039:
0040:        /**
0041:         * A version of Hashtable supporting concurrency for both retrievals and
0042:         * updates:
0043:         * 
0044:         * <dl>
0045:         * <dt> Retrievals
0046:         * 
0047:         * <dd> Retrievals may overlap updates. (This is the same policy as
0048:         * ConcurrentReaderHashMap.) Successful retrievals using get(key) and
0049:         * containsKey(key) usually run without locking. Unsuccessful retrievals (i.e.,
0050:         * when the key is not present) do involve brief synchronization (locking).
0051:         * Because retrieval operations can ordinarily overlap with update operations
0052:         * (i.e., put, remove, and their derivatives), retrievals can only be guaranteed
0053:         * to return the results of the most recently <em>completed</em> operations
0054:         * holding upon their onset. Retrieval operations may or may not return results
0055:         * reflecting in-progress writing operations. However, the retrieval operations
0056:         * do always return consistent results -- either those holding before any single
0057:         * modification or after it, but never a nonsense result. For aggregate
0058:         * operations such as putAll and clear, concurrent reads may reflect insertion
0059:         * or removal of only some entries.
0060:         * <p>
0061:         * 
0062:         * Iterators and Enumerations (i.e., those returned by keySet().iterator(),
0063:         * entrySet().iterator(), values().iterator(), keys(), and elements()) return
0064:         * elements reflecting the state of the hash table at some point at or since the
0065:         * creation of the iterator/enumeration. They will return at most one instance
0066:         * of each element (via next()/nextElement()), but might or might not reflect
0067:         * puts and removes that have been processed since they were created. They do
0068:         * <em>not</em> throw ConcurrentModificationException. However, these
0069:         * iterators are designed to be used by only one thread at a time. Passing an
0070:         * iterator across multiple threads may lead to unpredictable results if the
0071:         * table is being concurrently modified.
0072:         * <p>
0073:         * 
0074:         * 
0075:         * <dt> Updates
0076:         * 
0077:         * <dd> This class supports a hard-wired preset <em>concurrency
0078:         * level</em> of
0079:         * 32. This allows a maximum of 32 put and/or remove operations to proceed
0080:         * concurrently. This level is an upper bound on concurrency, not a guarantee,
0081:         * since it interacts with how well-strewn elements are across bins of the
0082:         * table. (The preset value in part reflects the fact that even on large
0083:         * multiprocessors, factors other than synchronization tend to be bottlenecks
0084:         * when more than 32 threads concurrently attempt updates.) Additionally,
0085:         * operations triggering internal resizing and clearing do not execute
0086:         * concurrently with any operation.
0087:         * <p>
0088:         * 
0089:         * There is <em>NOT</em> any support for locking the entire table to prevent
0090:         * updates. This makes it imposssible, for example, to add an element only if it
0091:         * is not already present, since another thread may be in the process of doing
0092:         * the same thing. If you need such capabilities, consider instead using the
0093:         * ConcurrentReaderHashMap class.
0094:         * 
0095:         * </dl>
0096:         * 
0097:         * Because of how concurrency control is split up, the size() and isEmpty()
0098:         * methods require accumulations across 32 control segments, and so might be
0099:         * slightly slower than you expect.
0100:         * <p>
0101:         * 
0102:         * This class may be used as a direct replacement for java.util.Hashtable in any
0103:         * application that does not rely on the ability to lock the entire table to
0104:         * prevent updates. As of this writing, it performs much faster than Hashtable
0105:         * in typical multi-threaded applications with multiple readers and writers.
0106:         * Like Hashtable but unlike java.util.HashMap, this class does NOT allow
0107:         * <tt>null</tt> to be used as a key or value.
0108:         * <p>
0109:         * 
0110:         * Implementation note: A slightly faster implementation of this class will be
0111:         * possible once planned Java Memory Model revisions are in place.
0112:         * 
0113:         * <p>[<a
0114:         * href="http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html">
0115:         * Introduction to this package. </a>]
0116:         * 
0117:         */
0118:
0119:        public class ConcurrentHashMap extends AbstractMap implements  Map,
0120:                Cloneable, Serializable {
0121:            private static final long serialVersionUID = 1L;
0122:
0123:            /*
0124:             * The basic strategy is an optimistic-style scheme based on the guarantee
0125:             * that the hash table and its lists are always kept in a consistent enough
0126:             * state to be read without locking:
0127:             * 
0128:             * Read operations first proceed without locking, by traversing the
0129:             * apparently correct list of the apparently correct bin. If an entry is
0130:             * found, but not invalidated (value field null), it is returned. If not
0131:             * found, operations must recheck (after a memory barrier) to make sure they
0132:             * are using both the right list and the right table (which can change under
0133:             * resizes). If invalidated, reads must acquire main update lock to wait out
0134:             * the update, and then re-traverse.
0135:             * 
0136:             * All list additions are at the front of each bin, making it easy to check
0137:             * changes, and also fast to traverse. Entry next pointers are never
0138:             * assigned. Remove() builds new nodes when necessary to preserve this.
0139:             * 
0140:             * Remove() (also clear()) invalidates removed nodes to alert read
0141:             * operations that they must wait out the full modifications.
0142:             * 
0143:             * Locking for puts, removes (and, when necessary gets, etc) is controlled
0144:             * by Segments, each covering a portion of the table. During operations
0145:             * requiring global exclusivity (mainly resize and clear), ALL of these
0146:             * locks are acquired at once. Note that these segments are NOT contiguous --
0147:             * they are based on the least 5 bits of hashcodes. This ensures that the
0148:             * same segment controls the same slots before and after resizing, which is
0149:             * necessary for supporting concurrent retrievals. This comes at the price
0150:             * of a mismatch of logical vs physical locality, but this seems not to be a
0151:             * performance problem in practice.
0152:             * 
0153:             */
0154:
0155:            /**
0156:             * The hash table data.
0157:             */
0158:            protected transient Entry[] table;
0159:
0160:            /**
0161:             * The number of concurrency control segments. The value can be at most 32
0162:             * since ints are used as bitsets over segments. Emprically, it doesn't seem
0163:             * to pay to decrease it either, so the value should be at least 32. In
0164:             * other words, do not redefine this :-)
0165:             */
0166:            protected static final int CONCURRENCY_LEVEL = 32;
0167:
0168:            /**
0169:             * Mask value for indexing into segments
0170:             */
0171:            protected static final int SEGMENT_MASK = CONCURRENCY_LEVEL - 1;
0172:
0173:            /**
0174:             * Bookkeeping for each concurrency control segment. Each segment contains a
0175:             * local count of the number of elements in its region. However, the main
0176:             * use of a Segment is for its lock.
0177:             */
0178:            protected final static class Segment implements  Serializable {
0179:                private static final long serialVersionUID = 1L;
0180:
0181:                /**
0182:                 * The number of elements in this segment's region. It is always updated
0183:                 * within synchronized blocks.
0184:                 */
0185:                protected int count;
0186:
0187:                /**
0188:                 * Get the count under synch.
0189:                 * @return count under sync
0190:                 */
0191:                protected synchronized int getCount() {
0192:                    return count;
0193:                }
0194:
0195:                /**
0196:                 * Force a synchronization
0197:                 */
0198:                protected synchronized void synch() {
0199:                }
0200:            }
0201:
0202:            /**
0203:             * The array of concurrency control segments.
0204:             */
0205:
0206:            protected final Segment[] segments = new Segment[CONCURRENCY_LEVEL];
0207:
0208:            /**
0209:             * The default initial number of table slots for this table (32). Used when
0210:             * not otherwise specified in constructor.
0211:             */
0212:            public static final int DEFAULT_INITIAL_CAPACITY = 32;
0213:
0214:            /**
0215:             * The minimum capacity, used if a lower value is implicitly specified by
0216:             * either of the constructors with arguments. MUST be a power of two.
0217:             */
0218:            private static final int MINIMUM_CAPACITY = 32;
0219:
0220:            /**
0221:             * The maximum capacity, used if a higher value is implicitly specified by
0222:             * either of the constructors with arguments. MUST be a power of two <= 1<<30.
0223:             */
0224:            private static final int MAXIMUM_CAPACITY = 1 << 30;
0225:
0226:            /**
0227:             * The default load factor for this table (0.75) Used when not otherwise
0228:             * specified in constructor.
0229:             */
0230:            public static final float DEFAULT_LOAD_FACTOR = 0.75f;
0231:
0232:            /**
0233:             * The load factor for the hash table.
0234:             * 
0235:             * @serial
0236:             */
0237:            protected final float loadFactor;
0238:
0239:            /**
0240:             * Per-segment resize threshold.
0241:             * 
0242:             * @serial
0243:             */
0244:            protected int threshold;
0245:
0246:            /**
0247:             * Number of segments voting for resize. The table is doubled when 1/4 of
0248:             * the segments reach threshold. Volatile but updated without synch since
0249:             * this is just a heuristic.
0250:             */
0251:            protected transient volatile int votesForResize;
0252:
0253:            /**
0254:             * Return the number of set bits in w. For a derivation of this algorithm,
0255:             * see "Algorithms and data structures with applications to graphics and
0256:             * geometry", by Jurg Nievergelt and Klaus Hinrichs, Prentice Hall, 1993.
0257:             * See also notes by Torsten Sillke at
0258:             * http://www.mathematik.uni-bielefeld.de/~sillke/PROBLEMS/bitcount
0259:             * @param w arg
0260:             * @return number of set bits
0261:             */
0262:            protected static int bitcount(int w) {
0263:                w -= (0xaaaaaaaa & w) >>> 1;
0264:                w = (w & 0x33333333) + ((w >>> 2) & 0x33333333);
0265:                w = (w + (w >>> 4)) & 0x0f0f0f0f;
0266:                w += w >>> 8;
0267:                w += w >>> 16;
0268:                return w & 0xff;
0269:            }
0270:
0271:            /**
0272:             * Returns the appropriate capacity (power of two) for the specified initial
0273:             * capacity argument.
0274:             * @param initialCapacity the initial capacity
0275:             * @return appropriate capacity
0276:             */
0277:            private int p2capacity(int initialCapacity) {
0278:                int cap = initialCapacity;
0279:
0280:                // Compute the appropriate capacity
0281:                int result;
0282:                if (cap > MAXIMUM_CAPACITY || cap < 0) {
0283:                    result = MAXIMUM_CAPACITY;
0284:                } else {
0285:                    result = MINIMUM_CAPACITY;
0286:                    while (result < cap) {
0287:                        result <<= 1;
0288:                    }
0289:                }
0290:                return result;
0291:            }
0292:
0293:            /**
0294:             * Return hash code for Object x. Since we are using power-of-two tables, it
0295:             * is worth the effort to improve hashcode via the same multiplicative
0296:             * scheme as used in IdentityHashMap.
0297:             * @param x 
0298:             * @return hash code
0299:             */
0300:            protected static int hash(Object x) {
0301:                int h = x.hashCode();
0302:                // Multiply by 127 (quickly, via shifts), and mix in some high
0303:                // bits to help guard against bunching of codes that are
0304:                // consecutive or equally spaced.
0305:                return ((h << 7) - h + (h >>> 9) + (h >>> 17));
0306:            }
0307:
0308:            /**
0309:             * Check for equality of non-null references x and y.
0310:             * @param x ref
0311:             * @param y ref
0312:             * @return is equal
0313:             */
0314:            protected boolean eq(Object x, Object y) {
0315:                return x == y || x.equals(y);
0316:            }
0317:
0318:            /**
0319:             * Create table array and set the per-segment threshold * 
0320:             * @param capacity 
0321:             * @return table array
0322:             */
0323:            protected Entry[] newTable(int capacity) {
0324:                threshold = (int) (capacity * loadFactor / CONCURRENCY_LEVEL) + 1;
0325:                return new Entry[capacity];
0326:            }
0327:
0328:            /**
0329:             * Constructs a new, empty map with the specified initial capacity and the
0330:             * specified load factor.
0331:             * 
0332:             * @param initialCapacity
0333:             *            the initial capacity. The actual initial capacity is rounded
0334:             *            to the nearest power of two.
0335:             * @param loadFactor
0336:             *            the load factor threshold, used to control resizing. This
0337:             *            value is used in an approximate way: When at least a quarter
0338:             *            of the segments of the table reach per-segment threshold, or
0339:             *            one of the segments itself exceeds overall threshold, the
0340:             *            table is doubled. This will on average cause resizing when the
0341:             *            table-wide load factor is slightly less than the threshold. If
0342:             *            you'd like to avoid resizing, you can set this to a
0343:             *            ridiculously large value.
0344:             * @throws IllegalArgumentException
0345:             *             if the load factor is nonpositive.
0346:             */
0347:            public ConcurrentHashMap(int initialCapacity, float loadFactor) {
0348:                if (!(loadFactor > 0)) {
0349:                    throw new IllegalArgumentException("Illegal Load factor: "
0350:                            + loadFactor);
0351:                }
0352:                this .loadFactor = loadFactor;
0353:                for (int i = 0; i < segments.length; ++i) {
0354:                    segments[i] = new Segment();
0355:                }
0356:                int cap = p2capacity(initialCapacity);
0357:                table = newTable(cap);
0358:            }
0359:
0360:            /**
0361:             * Constructs a new, empty map with the specified initial capacity and
0362:             * default load factor.
0363:             * 
0364:             * @param initialCapacity
0365:             *            the initial capacity of the ConcurrentHashMap.
0366:             * @throws IllegalArgumentException
0367:             *             if the initial maximum number of elements is less than zero.
0368:             */
0369:            public ConcurrentHashMap(int initialCapacity) {
0370:                this (initialCapacity, DEFAULT_LOAD_FACTOR);
0371:            }
0372:
0373:            /**
0374:             * Constructs a new, empty map with a default initial capacity and default
0375:             * load factor.
0376:             */
0377:            public ConcurrentHashMap() {
0378:                this (DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
0379:            }
0380:
0381:            /**
0382:             * Constructs a new map with the same mappings as the given map. The map is
0383:             * created with a capacity of twice the number of mappings in the given map
0384:             * or 32 (whichever is greater), and a default load factor.
0385:             * @param t map to copy
0386:             */
0387:            public ConcurrentHashMap(Map t) {
0388:                this (Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
0389:                        MINIMUM_CAPACITY), DEFAULT_LOAD_FACTOR);
0390:                putAll(t);
0391:            }
0392:
0393:            /**
0394:             * Returns the number of key-value mappings in this map.
0395:             * 
0396:             * @return the number of key-value mappings in this map.
0397:             */
0398:            public int size() {
0399:                int c = 0;
0400:                for (int i = 0; i < segments.length; ++i) {
0401:                    c += segments[i].getCount();
0402:                }
0403:                return c;
0404:            }
0405:
0406:            /**
0407:             * Returns <tt>true</tt> if this map contains no key-value mappings.
0408:             * 
0409:             * @return <tt>true</tt> if this map contains no key-value mappings.
0410:             */
0411:            public boolean isEmpty() {
0412:                for (int i = 0; i < segments.length; ++i) {
0413:                    if (segments[i].getCount() != 0) {
0414:                        return false;
0415:                    }
0416:                }
0417:                return true;
0418:            }
0419:
0420:            /**
0421:             * Returns the value to which the specified key is mapped in this table.
0422:             * 
0423:             * @param key
0424:             *            a key in the table.
0425:             * @return the value to which the key is mapped in this table;
0426:             *         <code>null</code> if the key is not mapped to any value in this
0427:             *         table.
0428:             * @exception NullPointerException
0429:             *                if the key is <code>null</code>.
0430:             * @see #put(Object, Object)
0431:             */
0432:            public Object get(Object key) {
0433:                int hash = hash(key); // throws null pointer exception if key null
0434:
0435:                // Try first without locking...
0436:                Entry[] tab = table;
0437:                int index = hash & (tab.length - 1);
0438:                Entry first = tab[index];
0439:                Entry e;
0440:
0441:                for (e = first; e != null; e = e.next) {
0442:                    if (e.hash == hash && eq(key, e.key)) {
0443:                        Object value = e.value;
0444:                        if (value != null) {
0445:                            return value;
0446:                        } else {
0447:                            break;
0448:                        }
0449:                    }
0450:                }
0451:
0452:                // Recheck under synch if key apparently not there or interference
0453:                Segment seg = segments[hash & SEGMENT_MASK];
0454:                synchronized (seg) {
0455:                    tab = table;
0456:                    index = hash & (tab.length - 1);
0457:                    Entry newFirst = tab[index];
0458:                    if (e != null || first != newFirst) {
0459:                        for (e = newFirst; e != null; e = e.next) {
0460:                            if (e.hash == hash && eq(key, e.key)) {
0461:                                return e.value;
0462:                            }
0463:                        }
0464:                    }
0465:                    return null;
0466:                }
0467:            }
0468:
0469:            /**
0470:             * Tests if the specified object is a key in this table.
0471:             * 
0472:             * @param key
0473:             *            possible key.
0474:             * @return <code>true</code> if and only if the specified object is a key
0475:             *         in this table, as determined by the <tt>equals</tt> method;
0476:             *         <code>false</code> otherwise.
0477:             * @exception NullPointerException
0478:             *                if the key is <code>null</code>.
0479:             * @see #contains(Object)
0480:             */
0481:            public boolean containsKey(Object key) {
0482:                return get(key) != null;
0483:            }
0484:
0485:            /**
0486:             * Maps the specified <code>key</code> to the specified <code>value</code>
0487:             * in this table. Neither the key nor the value can be <code>null</code>.
0488:             * (Note that this policy is the same as for java.util.Hashtable, but unlike
0489:             * java.util.HashMap, which does accept nulls as valid keys and values.)
0490:             * <p>
0491:             * 
0492:             * The value can be retrieved by calling the <code>get</code> method with
0493:             * a key that is equal to the original key.
0494:             * 
0495:             * @param key
0496:             *            the table key.
0497:             * @param value
0498:             *            the value.
0499:             * @return the previous value of the specified key in this table, or
0500:             *         <code>null</code> if it did not have one.
0501:             * @exception NullPointerException
0502:             *                if the key or value is <code>null</code>.
0503:             * @see Object#equals(Object)
0504:             * @see #get(Object)
0505:             */
0506:            public Object put(Object key, Object value) {
0507:                if (value == null) {
0508:                    throw new IllegalArgumentException("Value must not be null");
0509:                }
0510:                int hash = hash(key);
0511:                Segment seg = segments[hash & SEGMENT_MASK];
0512:                int segcount;
0513:                Entry[] tab;
0514:                int votes;
0515:
0516:                synchronized (seg) {
0517:                    tab = table;
0518:                    int index = hash & (tab.length - 1);
0519:                    Entry first = tab[index];
0520:
0521:                    for (Entry e = first; e != null; e = e.next) {
0522:                        if (e.hash == hash && eq(key, e.key)) {
0523:                            Object oldValue = e.value;
0524:                            e.value = value;
0525:                            return oldValue;
0526:                        }
0527:                    }
0528:
0529:                    // Add to front of list
0530:                    Entry newEntry = new Entry(hash, key, value, first);
0531:                    tab[index] = newEntry;
0532:
0533:                    if ((segcount = ++seg.count) < threshold) {
0534:                        return null;
0535:                    }
0536:
0537:                    int bit = (1 << (hash & SEGMENT_MASK));
0538:                    votes = votesForResize;
0539:                    if ((votes & bit) == 0) {
0540:                        votes = votesForResize |= bit;
0541:                    }
0542:                }
0543:
0544:                // Attempt resize if 1/4 segs vote,
0545:                // or if this seg itself reaches the overall threshold.
0546:                // (The latter check is just a safeguard to avoid pathological cases.)
0547:                if (bitcount(votes) >= CONCURRENCY_LEVEL / 4
0548:                        || segcount > (threshold * CONCURRENCY_LEVEL)) {
0549:                    resize(0, tab);
0550:                }
0551:
0552:                return null;
0553:            }
0554:
0555:            /**
0556:             * Gather all locks in order to call rehash, by recursing within synch
0557:             * blocks for each segment index.
0558:             * 
0559:             * @param index
0560:             *            the current segment. initially call value must be 0
0561:             * @param assumedTab
0562:             *            the state of table on first call to resize. If this changes on
0563:             *            any call, the attempt is aborted because the table has already
0564:             *            been resized by another thread.
0565:             */
0566:            protected void resize(int index, Entry[] assumedTab) {
0567:                Segment seg = segments[index];
0568:                synchronized (seg) {
0569:                    if (assumedTab == table) {
0570:                        int next = index + 1;
0571:                        if (next < segments.length) {
0572:                            resize(next, assumedTab);
0573:                        } else {
0574:                            rehash();
0575:                        }
0576:                    }
0577:                }
0578:            }
0579:
0580:            /**
0581:             * Rehashes the contents of this map into a new table with a larger
0582:             * capacity.
0583:             */
0584:            protected void rehash() {
0585:                votesForResize = 0; // reset
0586:
0587:                Entry[] oldTable = table;
0588:                int oldCapacity = oldTable.length;
0589:
0590:                if (oldCapacity >= MAXIMUM_CAPACITY) {
0591:                    threshold = Integer.MAX_VALUE; // avoid retriggering
0592:                    return;
0593:                }
0594:
0595:                int newCapacity = oldCapacity << 1;
0596:                Entry[] newTable = newTable(newCapacity);
0597:                int mask = newCapacity - 1;
0598:
0599:                /*
0600:                 * Reclassify nodes in each list to new Map. Because we are using
0601:                 * power-of-two expansion, the elements from each bin must either stay
0602:                 * at same index, or move to oldCapacity+index. We also eliminate
0603:                 * unnecessary node creation by catching cases where old nodes can be
0604:                 * reused because their next fields won't change. Statistically, at the
0605:                 * default threshhold, only about one-sixth of them need cloning. (The
0606:                 * nodes they replace will be garbage collectable as soon as they are no
0607:                 * longer referenced by any reader thread that may be in the midst of
0608:                 * traversing table right now.)
0609:                 */
0610:
0611:                for (int i = 0; i < oldCapacity; i++) {
0612:                    // We need to guarantee that any existing reads of old Map can
0613:                    // proceed. So we cannot yet null out each bin.
0614:                    Entry e = oldTable[i];
0615:
0616:                    if (e != null) {
0617:                        int idx = e.hash & mask;
0618:                        Entry next = e.next;
0619:
0620:                        // Single node on list
0621:                        if (next == null) {
0622:                            newTable[idx] = e;
0623:                        } else {
0624:                            // Reuse trailing consecutive sequence of all same bit
0625:                            Entry lastRun = e;
0626:                            int lastIdx = idx;
0627:                            for (Entry last = next; last != null; last = last.next) {
0628:                                int k = last.hash & mask;
0629:                                if (k != lastIdx) {
0630:                                    lastIdx = k;
0631:                                    lastRun = last;
0632:                                }
0633:                            }
0634:                            newTable[lastIdx] = lastRun;
0635:
0636:                            // Clone all remaining nodes
0637:                            for (Entry p = e; p != lastRun; p = p.next) {
0638:                                int k = p.hash & mask;
0639:                                newTable[k] = new Entry(p.hash, p.key, p.value,
0640:                                        newTable[k]);
0641:                            }
0642:                        }
0643:                    }
0644:                }
0645:
0646:                table = newTable;
0647:            }
0648:
0649:            /**
0650:             * Removes the key (and its corresponding value) from this table. This
0651:             * method does nothing if the key is not in the table.
0652:             * 
0653:             * @param key
0654:             *            the key that needs to be removed.
0655:             * @return the value to which the key had been mapped in this table, or
0656:             *         <code>null</code> if the key did not have a mapping.
0657:             * @exception NullPointerException
0658:             *                if the key is <code>null</code>.
0659:             */
0660:            public Object remove(Object key) {
0661:                return remove(key, null);
0662:            }
0663:
0664:            /**
0665:             * Removes the (key, value) pair from this table. This method does nothing
0666:             * if the key is not in the table, or if the key is associated with a
0667:             * different value. This method is needed by EntrySet.
0668:             * 
0669:             * @param key
0670:             *            the key that needs to be removed.
0671:             * @param value
0672:             *            the associated value. If the value is null, it means "any
0673:             *            value".
0674:             * @return the value to which the key had been mapped in this table, or
0675:             *         <code>null</code> if the key did not have a mapping.
0676:             * @exception NullPointerException
0677:             *                if the key is <code>null</code>.
0678:             */
0679:            protected Object remove(Object key, Object value) {
0680:                /*
0681:                 * Find the entry, then 1. Set value field to null, to force get() to
0682:                 * retry 2. Rebuild the list without this entry. All entries following
0683:                 * removed node can stay in list, but all preceeding ones need to be
0684:                 * cloned. Traversals rely on this strategy to ensure that elements will
0685:                 * not be repeated during iteration.
0686:                 */
0687:
0688:                int hash = hash(key);
0689:                Segment seg = segments[hash & SEGMENT_MASK];
0690:
0691:                synchronized (seg) {
0692:                    Entry[] tab = table;
0693:                    int index = hash & (tab.length - 1);
0694:                    Entry first = tab[index];
0695:                    Entry e = first;
0696:
0697:                    for (;;) {
0698:                        if (e == null) {
0699:                            return null;
0700:                        }
0701:                        if (e.hash == hash && eq(key, e.key)) {
0702:                            break;
0703:                        }
0704:                        e = e.next;
0705:                    }
0706:
0707:                    Object oldValue = e.value;
0708:                    if (value != null && !value.equals(oldValue)) {
0709:                        return null;
0710:                    }
0711:
0712:                    e.value = null;
0713:
0714:                    Entry head = e.next;
0715:                    for (Entry p = first; p != e; p = p.next) {
0716:                        head = new Entry(p.hash, p.key, p.value, head);
0717:                    }
0718:                    tab[index] = head;
0719:                    seg.count--;
0720:                    return oldValue;
0721:                }
0722:            }
0723:
0724:            /**
0725:             * Returns <tt>true</tt> if this map maps one or more keys to the
0726:             * specified value. Note: This method requires a full internal traversal of
0727:             * the hash table, and so is much slower than method <tt>containsKey</tt>.
0728:             * 
0729:             * @param value
0730:             *            value whose presence in this map is to be tested.
0731:             * @return <tt>true</tt> if this map maps one or more keys to the
0732:             *         specified value.
0733:             * @exception NullPointerException
0734:             *                if the value is <code>null</code>.
0735:             */
0736:            public boolean containsValue(Object value) {
0737:                if (value == null) {
0738:                    throw new IllegalArgumentException("Value must not be null");
0739:                }
0740:                for (int s = 0; s < segments.length; ++s) {
0741:                    Segment seg = segments[s];
0742:                    Entry[] tab;
0743:                    synchronized (seg) {
0744:                        tab = table;
0745:                    }
0746:                    for (int i = s; i < tab.length; i += segments.length) {
0747:                        for (Entry e = tab[i]; e != null; e = e.next) {
0748:                            if (value.equals(e.value)) {
0749:                                return true;
0750:                            }
0751:                        }
0752:                    }
0753:                }
0754:                return false;
0755:            }
0756:
0757:            /**
0758:             * Tests if some key maps into the specified value in this table. This
0759:             * operation is more expensive than the <code>containsKey</code> method.
0760:             * <p>
0761:             * 
0762:             * Note that this method is identical in functionality to containsValue,
0763:             * (which is part of the Map interface in the collections framework).
0764:             * 
0765:             * @param value
0766:             *            a value to search for.
0767:             * @return <code>true</code> if and only if some key maps to the
0768:             *         <code>value</code> argument in this table as determined by the
0769:             *         <tt>equals</tt> method; <code>false</code> otherwise.
0770:             * @exception NullPointerException
0771:             *                if the value is <code>null</code>.
0772:             * @see #containsKey(Object)
0773:             * @see #containsValue(Object)
0774:             * @see Map
0775:             */
0776:            public boolean contains(Object value) {
0777:                return containsValue(value);
0778:            }
0779:
0780:            /**
0781:             * Copies all of the mappings from the specified map to this one.
0782:             * 
0783:             * These mappings replace any mappings that this map had for any of the keys
0784:             * currently in the specified Map.
0785:             * 
0786:             * @param t
0787:             *            Mappings to be stored in this map.
0788:             */
0789:            public void putAll(Map t) {
0790:                int n = t.size();
0791:                if (n == 0) {
0792:                    return;
0793:                }
0794:
0795:                // Expand enough to hold at least n elements without resizing.
0796:                // We can only resize table by factor of two at a time.
0797:                // It is faster to rehash with fewer elements, so do it now.
0798:                for (;;) {
0799:                    Entry[] tab;
0800:                    int max;
0801:                    synchronized (segments[0]) { // must synch on some segment. pick 0.
0802:                        tab = table;
0803:                        max = threshold * CONCURRENCY_LEVEL;
0804:                    }
0805:                    if (n < max) {
0806:                        break;
0807:                    }
0808:                    resize(0, tab);
0809:                }
0810:
0811:                for (Iterator it = t.entrySet().iterator(); it.hasNext();) {
0812:                    Map.Entry entry = (Map.Entry) it.next();
0813:                    put(entry.getKey(), entry.getValue());
0814:                }
0815:            }
0816:
0817:            /**
0818:             * Removes all mappings from this map.
0819:             */
0820:            public void clear() {
0821:                // We don't need all locks at once so long as locks
0822:                // are obtained in low to high order
0823:                for (int s = 0; s < segments.length; ++s) {
0824:                    Segment seg = segments[s];
0825:                    synchronized (seg) {
0826:                        Entry[] tab = table;
0827:                        for (int i = s; i < tab.length; i += segments.length) {
0828:                            for (Entry e = tab[i]; e != null; e = e.next) {
0829:                                e.value = null;
0830:                            }
0831:                            tab[i] = null;
0832:                            seg.count = 0;
0833:                        }
0834:                    }
0835:                }
0836:            }
0837:
0838:            /**
0839:             * Returns a shallow copy of this <tt>ConcurrentHashMap</tt> instance: the
0840:             * keys and values themselves are not cloned.
0841:             * 
0842:             * @return a shallow copy of this map.
0843:             */
0844:            public Object clone() {
0845:                // We cannot call super.clone, since it would share final segments
0846:                // array,
0847:                // and there's no way to reassign finals.
0848:                return new ConcurrentHashMap(this );
0849:            }
0850:
0851:            // Views
0852:
0853:            protected transient Set keySet = null;
0854:            protected transient Set entrySet = null;
0855:            protected transient Collection values = null;
0856:
0857:            /**
0858:             * Returns a set view of the keys contained in this map. The set is backed
0859:             * by the map, so changes to the map are reflected in the set, and
0860:             * vice-versa. The set supports element removal, which removes the
0861:             * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
0862:             * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
0863:             * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
0864:             * <tt>addAll</tt> operations.
0865:             * 
0866:             * @return a set view of the keys contained in this map.
0867:             */
0868:            public Set keySet() {
0869:                Set ks = keySet;
0870:                return (ks != null) ? ks : (keySet = new KeySet());
0871:            }
0872:
0873:            private class KeySet extends AbstractSet {
0874:                /**
0875:                 * @see java.util.Set#iterator()
0876:                 */
0877:                public Iterator iterator() {
0878:                    return new KeyIterator();
0879:                }
0880:
0881:                /**
0882:                 * @see java.util.Set#size()
0883:                 */
0884:                public int size() {
0885:                    return ConcurrentHashMap.this .size();
0886:                }
0887:
0888:                /**
0889:                 * @see java.util.Set#contains(java.lang.Object)
0890:                 */
0891:                public boolean contains(Object o) {
0892:                    return ConcurrentHashMap.this .containsKey(o);
0893:                }
0894:
0895:                /**
0896:                 * @see java.util.Set#remove(java.lang.Object)
0897:                 */
0898:                public boolean remove(Object o) {
0899:                    return ConcurrentHashMap.this .remove(o) != null;
0900:                }
0901:
0902:                /**
0903:                 * @see java.util.Set#clear()
0904:                 */
0905:                public void clear() {
0906:                    ConcurrentHashMap.this .clear();
0907:                }
0908:            }
0909:
0910:            /**
0911:             * Returns a collection view of the values contained in this map. The
0912:             * collection is backed by the map, so changes to the map are reflected in
0913:             * the collection, and vice-versa. The collection supports element removal,
0914:             * which removes the corresponding mapping from this map, via the
0915:             * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
0916:             * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
0917:             * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
0918:             * operations.
0919:             * 
0920:             * @return a collection view of the values contained in this map.
0921:             */
0922:            public Collection values() {
0923:                Collection vs = values;
0924:                return (vs != null) ? vs : (values = new Values());
0925:            }
0926:
0927:            private class Values extends AbstractCollection {
0928:                /**
0929:                 * @see java.util.AbstractCollection#iterator()
0930:                 */
0931:                public Iterator iterator() {
0932:                    return new ValueIterator();
0933:                }
0934:
0935:                /**
0936:                 * @see java.util.AbstractCollection#size()
0937:                 */
0938:                public int size() {
0939:                    return ConcurrentHashMap.this .size();
0940:                }
0941:
0942:                /**
0943:                 * @see java.util.AbstractCollection#contains(java.lang.Object)
0944:                 */
0945:                public boolean contains(Object o) {
0946:                    return ConcurrentHashMap.this .containsValue(o);
0947:                }
0948:
0949:                /**
0950:                 * @see java.util.AbstractCollection#clear()
0951:                 */
0952:                public void clear() {
0953:                    ConcurrentHashMap.this .clear();
0954:                }
0955:            }
0956:
0957:            /**
0958:             * Returns a collection view of the mappings contained in this map. Each
0959:             * element in the returned collection is a <tt>Map.Entry</tt>. The
0960:             * collection is backed by the map, so changes to the map are reflected in
0961:             * the collection, and vice-versa. The collection supports element removal,
0962:             * which removes the corresponding mapping from the map, via the
0963:             * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
0964:             * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
0965:             * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
0966:             * operations.
0967:             * 
0968:             * @return a collection view of the mappings contained in this map.
0969:             */
0970:            public Set entrySet() {
0971:                Set es = entrySet;
0972:                return (es != null) ? es : (entrySet = new EntrySet());
0973:            }
0974:
0975:            private class EntrySet extends AbstractSet {
0976:                /**
0977:                 * @see java.util.Set#iterator()
0978:                 */
0979:                public Iterator iterator() {
0980:                    return new HashIterator();
0981:                }
0982:
0983:                /**
0984:                 * @see java.util.Set#contains(java.lang.Object)
0985:                 */
0986:                public boolean contains(Object o) {
0987:                    if (!(o instanceof  Map.Entry)) {
0988:                        return false;
0989:                    }
0990:                    Map.Entry entry = (Map.Entry) o;
0991:                    Object v = ConcurrentHashMap.this .get(entry.getKey());
0992:                    return v != null && v.equals(entry.getValue());
0993:                }
0994:
0995:                /**
0996:                 * @see java.util.Set#remove(java.lang.Object)
0997:                 */
0998:                public boolean remove(Object o) {
0999:                    if (!(o instanceof  Map.Entry)) {
1000:                        return false;
1001:                    }
1002:                    Map.Entry e = (Map.Entry) o;
1003:                    return ConcurrentHashMap.this .remove(e.getKey(), e
1004:                            .getValue()) != null;
1005:                }
1006:
1007:                /**
1008:                 * @see java.util.Set#size()
1009:                 */
1010:                public int size() {
1011:                    return ConcurrentHashMap.this .size();
1012:                }
1013:
1014:                /**
1015:                 * @see java.util.Set#clear()
1016:                 */
1017:                public void clear() {
1018:                    ConcurrentHashMap.this .clear();
1019:                }
1020:            }
1021:
1022:            /**
1023:             * Returns an enumeration of the keys in this table.
1024:             * 
1025:             * @return an enumeration of the keys in this table.
1026:             * @see Enumeration
1027:             * @see #elements()
1028:             * @see #keySet()
1029:             * @see Map
1030:             */
1031:            public Enumeration keys() {
1032:                return new KeyIterator();
1033:            }
1034:
1035:            /**
1036:             * Returns an enumeration of the values in this table. Use the Enumeration
1037:             * methods on the returned object to fetch the elements sequentially.
1038:             * 
1039:             * @return an enumeration of the values in this table.
1040:             * @see java.util.Enumeration
1041:             * @see #keys()
1042:             * @see #values()
1043:             * @see Map
1044:             */
1045:            public Enumeration elements() {
1046:                return new ValueIterator();
1047:            }
1048:
1049:            /**
1050:             * ConcurrentHashMap collision list entry.
1051:             */
1052:            protected static class Entry implements  Map.Entry {
1053:                /*
1054:                 * The use of volatile for value field ensures that we can detect status
1055:                 * changes without synchronization. The other fields are never changed,
1056:                 * and are marked as final.
1057:                 */
1058:
1059:                protected final Object key;
1060:                protected volatile Object value;
1061:                protected final int hash;
1062:                protected final Entry next;
1063:
1064:                Entry(int hash, Object key, Object value, Entry next) {
1065:                    this .value = value;
1066:                    this .hash = hash;
1067:                    this .key = key;
1068:                    this .next = next;
1069:                }
1070:
1071:                // Map.Entry Ops
1072:
1073:                /**
1074:                 * @see java.util.Map.Entry#getKey()
1075:                 */
1076:                public Object getKey() {
1077:                    return key;
1078:                }
1079:
1080:                /**
1081:                 * Get the value. Note: In an entrySet or entrySet.iterator, unless you
1082:                 * can guarantee lack of concurrent modification,
1083:                 * <tt>getValue</tt> <em>might</em> return null, reflecting the fact
1084:                 * that the entry has been concurrently removed. However, there are no
1085:                 * assurances that concurrent removals will be reflected using this
1086:                 * method.
1087:                 * 
1088:                 * @return the current value, or null if the entry has been detectably
1089:                 *         removed.
1090:                 */
1091:                public Object getValue() {
1092:                    return value;
1093:                }
1094:
1095:                /**
1096:                 * Set the value of this entry. Note: In an entrySet or
1097:                 * entrySet.iterator), unless you can guarantee lack of concurrent
1098:                 * modification, <tt>setValue</tt> is not strictly guaranteed to
1099:                 * actually replace the value field obtained via the <tt>get</tt>
1100:                 * operation of the underlying hash table in multithreaded applications.
1101:                 * If iterator-wide synchronization is not used, and any other
1102:                 * concurrent <tt>put</tt> or <tt>remove</tt> operations occur,
1103:                 * sometimes even to <em>other</em> entries, then this change is not
1104:                 * guaranteed to be reflected in the hash table. (It might, or it might
1105:                 * not. There are no assurances either way.)
1106:                 * 
1107:                 * @param value
1108:                 *            the new value.
1109:                 * @return the previous value, or null if entry has been detectably
1110:                 *         removed.
1111:                 * @exception NullPointerException
1112:                 *                if the value is <code>null</code>.
1113:                 * 
1114:                 */
1115:                public Object setValue(Object value) {
1116:                    if (value == null) {
1117:                        throw new IllegalArgumentException(
1118:                                "Value must not be null");
1119:                    }
1120:                    Object oldValue = this .value;
1121:                    this .value = value;
1122:                    return oldValue;
1123:                }
1124:
1125:                /**
1126:                 * @see java.util.Map.Entry#equals(java.lang.Object)
1127:                 */
1128:                public boolean equals(Object o) {
1129:                    if (!(o instanceof  Map.Entry)) {
1130:                        return false;
1131:                    }
1132:                    Map.Entry e = (Map.Entry) o;
1133:                    return (key.equals(e.getKey()) && value
1134:                            .equals(e.getValue()));
1135:                }
1136:
1137:                /**
1138:                 * @see java.util.Map.Entry#hashCode()
1139:                 */
1140:                public int hashCode() {
1141:                    return key.hashCode() ^ value.hashCode();
1142:                }
1143:
1144:                /**
1145:                 * @see java.lang.Object#toString()
1146:                 */
1147:                public String toString() {
1148:                    return key + "=" + value;
1149:                }
1150:            }
1151:
1152:            protected class HashIterator implements  Iterator, Enumeration {
1153:                protected final Entry[] tab; // snapshot of table
1154:                protected int index; // current slot
1155:                protected Entry entry = null; // current node of slot
1156:                protected Object currentKey; // key for current node
1157:                protected Object currentValue; // value for current node
1158:                protected Entry lastReturned = null; // last node returned by next
1159:
1160:                protected HashIterator() {
1161:                    // force all segments to synch
1162:                    synchronized (segments[0]) {
1163:                        tab = table;
1164:                    }
1165:                    for (int i = 1; i < segments.length; ++i) {
1166:                        segments[i].synch();
1167:                    }
1168:                    index = tab.length - 1;
1169:                }
1170:
1171:                /**
1172:                 * @see java.util.Enumeration#hasMoreElements()
1173:                 */
1174:                public boolean hasMoreElements() {
1175:                    return hasNext();
1176:                }
1177:
1178:                /**
1179:                 * @see java.util.Enumeration#nextElement()
1180:                 */
1181:                public Object nextElement() {
1182:                    return next();
1183:                }
1184:
1185:                /**
1186:                 * @see java.util.Iterator#hasNext()
1187:                 */
1188:                public boolean hasNext() {
1189:                    /*
1190:                     * currentkey and currentValue are set here to ensure that next()
1191:                     * returns normally if hasNext() returns true. This avoids surprises
1192:                     * especially when final element is removed during traversal --
1193:                     * instead, we just ignore the removal during current traversal.
1194:                     */
1195:
1196:                    for (;;) {
1197:                        if (entry != null) {
1198:                            Object v = entry.value;
1199:                            if (v != null) {
1200:                                currentKey = entry.key;
1201:                                currentValue = v;
1202:                                return true;
1203:                            } else {
1204:                                entry = entry.next;
1205:                            }
1206:                        }
1207:
1208:                        while (entry == null && index >= 0) {
1209:                            entry = tab[index--];
1210:                        }
1211:
1212:                        if (entry == null) {
1213:                            currentKey = currentValue = null;
1214:                            return false;
1215:                        }
1216:                    }
1217:                }
1218:
1219:                protected Object returnValueOfNext() {
1220:                    return entry;
1221:                }
1222:
1223:                /**
1224:                 * @see java.util.Iterator#next()
1225:                 */
1226:                public Object next() {
1227:                    if (currentKey == null && !hasNext()) {
1228:                        throw new NoSuchElementException();
1229:                    }
1230:
1231:                    Object result = returnValueOfNext();
1232:                    lastReturned = entry;
1233:                    currentKey = currentValue = null;
1234:                    entry = entry.next;
1235:                    return result;
1236:                }
1237:
1238:                /**
1239:                 * @see java.util.Iterator#remove()
1240:                 */
1241:                public void remove() {
1242:                    if (lastReturned == null) {
1243:                        throw new IllegalStateException();
1244:                    }
1245:                    ConcurrentHashMap.this .remove(lastReturned.key);
1246:                    lastReturned = null;
1247:                }
1248:            }
1249:
1250:            protected class KeyIterator extends HashIterator {
1251:                protected Object returnValueOfNext() {
1252:                    return currentKey;
1253:                }
1254:            }
1255:
1256:            protected class ValueIterator extends HashIterator {
1257:                protected Object returnValueOfNext() {
1258:                    return currentValue;
1259:                }
1260:            }
1261:
1262:            /**
1263:             * Save the state of the <tt>ConcurrentHashMap</tt> instance to a stream
1264:             * (i.e., serialize it).
1265:             * @param s 
1266:             * @throws IOException 
1267:             * 
1268:             * @serialData An estimate of the table size, followed by the key (Object)
1269:             *             and value (Object) for each key-value mapping, followed by a
1270:             *             null pair. The key-value mappings are emitted in no
1271:             *             particular order.
1272:             */
1273:            private void writeObject(java.io.ObjectOutputStream s)
1274:                    throws IOException {
1275:                // Write out the loadfactor, and any hidden stuff
1276:                s.defaultWriteObject();
1277:
1278:                // Write out capacity estimate. It is OK if this
1279:                // changes during the write, since it is only used by
1280:                // readObject to set initial capacity, to avoid needless resizings.
1281:
1282:                int cap;
1283:                synchronized (segments[0]) {
1284:                    cap = table.length;
1285:                }
1286:                s.writeInt(cap);
1287:
1288:                // Write out keys and values (alternating)
1289:                for (int k = 0; k < segments.length; ++k) {
1290:                    Segment seg = segments[k];
1291:                    Entry[] tab;
1292:                    synchronized (seg) {
1293:                        tab = table;
1294:                    }
1295:                    for (int i = k; i < tab.length; i += segments.length) {
1296:                        for (Entry e = tab[i]; e != null; e = e.next) {
1297:                            s.writeObject(e.key);
1298:                            s.writeObject(e.value);
1299:                        }
1300:                    }
1301:                }
1302:
1303:                s.writeObject(null);
1304:                s.writeObject(null);
1305:            }
1306:
1307:            /**
1308:             * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a stream
1309:             * (i.e., deserialize it).
1310:             * @param s 
1311:             * @throws IOException 
1312:             * @throws ClassNotFoundException 
1313:             */
1314:            private void readObject(java.io.ObjectInputStream s)
1315:                    throws IOException, ClassNotFoundException {
1316:                // Read in the threshold, loadfactor, and any hidden stuff
1317:                s.defaultReadObject();
1318:
1319:                int cap = s.readInt();
1320:                table = newTable(cap);
1321:                for (int i = 0; i < segments.length; ++i) {
1322:                    segments[i] = new Segment();
1323:                }
1324:
1325:                // Read the keys and values, and put the mappings in the table
1326:                for (;;) {
1327:                    Object key = s.readObject();
1328:                    Object value = s.readObject();
1329:                    if (key == null) {
1330:                        break;
1331:                    }
1332:                    put(key, value);
1333:                }
1334:            }
1335:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.