Source Code Cross Referenced for DenseMatrix.java in  » Science » jscience-4.3.1 » org » jscience » mathematics » vector » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » jscience 4.3.1 » org.jscience.mathematics.vector 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * JScience - Java(TM) Tools and Libraries for the Advancement of Sciences.
003:         * Copyright (C) 2006 - JScience (http://jscience.org/)
004:         * All rights reserved.
005:         * 
006:         * Permission to use, copy, modify, and distribute this software is
007:         * freely granted, provided that this notice is preserved.
008:         */
009:        package org.jscience.mathematics.vector;
010:
011:        import java.util.Iterator;
012:        import java.util.List;
013:
014:        import javolution.context.ConcurrentContext;
015:        import javolution.context.ObjectFactory;
016:        import javolution.lang.MathLib;
017:        import javolution.util.FastTable;
018:        import org.jscience.mathematics.structure.Field;
019:
020:        /**
021:         * <p> This class represents a matrix made of {@link DenseVector dense
022:         *     vectors} (as rows). To create a dense matrix made of column vectors the 
023:         *     {@link #transpose} method can be used. 
024:         *     For example:[code]
025:         *        DenseVector<Rational> column0 = DenseVector.valueOf(...);
026:         *        DenseVector<Rational> column1 = DenseVector.valueOf(...);
027:         *        DenseMatrix<Rational> M = DenseMatrix.valueOf(column0, column1).transpose();
028:         *     [/code]</p>
029:         * <p> As for any concrete {@link org.jscience.mathematics.structure.Structure
030:         *     structure}, this class is declared <code>final</code> (otherwise most
031:         *     operations would have to be overridden to return the appropriate type).
032:         *     Specialized dense matrix should sub-class {@link Matrix} directly.
033:         *     For example:[code]
034:         *        // Extension through composition.
035:         *        final class TriangularMatrix <F extends Field<F>> extends Matrix<F> {
036:         *             private DenseMatrix<F> _value; // Possible implementation.
037:         *             ...
038:         *             public TriangularMatrix opposite() { // Returns the right type.
039:         *                 return TriangularMatrix.valueOf(_value.opposite());
040:         *             }
041:         *             ...
042:         *        }[/code]
043:         *     </p>   
044:         * @author <a href="mailto:jean-marie@dautelle.com">Jean-Marie Dautelle</a>
045:         * @version 3.3, January 2, 2007
046:         */
047:        public final class DenseMatrix<F extends Field<F>> extends Matrix<F> {
048:
049:            /**
050:             * Holds the number of columns n.
051:             */
052:            int _n;
053:
054:            /**
055:             * Indicates if this matrix is transposed (the rows are then the columns).
056:             */
057:            boolean _transposed;
058:
059:            /**
060:             * Holds this matrix rows (or columns when transposed).
061:             */
062:            final FastTable<DenseVector<F>> _rows = new FastTable<DenseVector<F>>();
063:
064:            /**
065:             * Returns a dense matrix from the specified 2-dimensional array.
066:             * The first dimension being the row and the second being the column.
067:             * 
068:             * @param elements this matrix elements.
069:             * @return the matrix having the specified elements.
070:             * @throws DimensionException if rows have different length.
071:             * @see    DenseMatrix 
072:             */
073:            public static <F extends Field<F>> DenseMatrix<F> valueOf(
074:                    F[][] elements) {
075:                int m = elements.length;
076:                int n = elements[0].length;
077:                DenseMatrix<F> M = DenseMatrix.newInstance(n, false);
078:                for (int i = 0; i < m; i++) {
079:                    DenseVector<F> row = DenseVector.valueOf(elements[i]);
080:                    if (row.getDimension() != n)
081:                        throw new DimensionException();
082:                    M._rows.add(row);
083:                }
084:                return M;
085:            }
086:
087:            /**
088:             * Returns a dense matrix holding the specified row vectors 
089:             * (column vectors if {@link #transpose transposed}).
090:             *
091:             * @param rows the row vectors.
092:             * @return the matrix having the specified rows.
093:             * @throws DimensionException if the rows do not have the same dimension.
094:             */
095:            public static <F extends Field<F>> DenseMatrix<F> valueOf(
096:                    DenseVector<F>... rows) {
097:                final int n = rows[0].getDimension();
098:                DenseMatrix<F> M = DenseMatrix.newInstance(n, false);
099:                for (int i = 0, m = rows.length; i < m; i++) {
100:                    DenseVector<F> rowi = rows[i];
101:                    if (rowi.getDimension() != n)
102:                        throw new DimensionException(
103:                                "All vectors must have the same dimension.");
104:                    M._rows.add(rowi);
105:                }
106:                return M;
107:            }
108:
109:            /**
110:             * Returns a dense matrix holding the row vectors from the specified 
111:             * collection (column vectors if {@link #transpose transposed}).
112:             *
113:             * @param rows the list of row vectors.
114:             * @return the matrix having the specified rows.
115:             * @throws DimensionException if the rows do not have the same dimension.
116:             */
117:            public static <F extends Field<F>> DenseMatrix<F> valueOf(
118:                    List<DenseVector<F>> rows) {
119:                final int n = rows.get(0).getDimension();
120:                DenseMatrix<F> M = DenseMatrix.newInstance(n, false);
121:                Iterator<DenseVector<F>> iterator = rows.iterator();
122:                for (int i = 0, m = rows.size(); i < m; i++) {
123:                    DenseVector<F> rowi = iterator.next();
124:                    if (rowi.getDimension() != n)
125:                        throw new DimensionException(
126:                                "All vectors must have the same dimension.");
127:                    M._rows.add(rowi);
128:                }
129:                return M;
130:            }
131:
132:            /**
133:             * Returns a dense matrix equivalent to the specified matrix.
134:             *
135:             * @param that the matrix to convert.
136:             * @return <code>that</code> or a dense matrix holding the same elements
137:             *         as the specified matrix.
138:             */
139:            public static <F extends Field<F>> DenseMatrix<F> valueOf(
140:                    Matrix<F> that) {
141:                if (that instanceof  DenseMatrix)
142:                    return (DenseMatrix<F>) that;
143:                int n = that.getNumberOfColumns();
144:                int m = that.getNumberOfRows();
145:                DenseMatrix<F> M = DenseMatrix.newInstance(n, false);
146:                for (int i = 0; i < m; i++) {
147:                    DenseVector<F> rowi = DenseVector.valueOf(that.getRow(i));
148:                    M._rows.add(rowi);
149:                }
150:                return M;
151:            }
152:
153:            @Override
154:            public int getNumberOfRows() {
155:                return _transposed ? _n : _rows.size();
156:            }
157:
158:            @Override
159:            public int getNumberOfColumns() {
160:                return _transposed ? _rows.size() : _n;
161:            }
162:
163:            @Override
164:            public F get(int i, int j) {
165:                return _transposed ? _rows.get(j).get(i) : _rows.get(i).get(j);
166:            }
167:
168:            @Override
169:            public DenseVector<F> getRow(int i) {
170:                if (!_transposed)
171:                    return _rows.get(i);
172:                // Else transposed.
173:                int n = _rows.size();
174:                int m = _n;
175:                if ((i < 0) || (i >= m))
176:                    throw new DimensionException();
177:                DenseVector<F> V = DenseVector.newInstance();
178:                for (int j = 0; j < n; j++) {
179:                    V._elements.add(_rows.get(j).get(i));
180:                }
181:                return V;
182:            }
183:
184:            @Override
185:            public DenseVector<F> getColumn(int j) {
186:                if (_transposed)
187:                    return _rows.get(j);
188:                int m = _rows.size();
189:                if ((j < 0) || (j >= _n))
190:                    throw new DimensionException();
191:                DenseVector<F> V = DenseVector.newInstance();
192:                for (int i = 0; i < m; i++) {
193:                    V._elements.add(_rows.get(i).get(j));
194:                }
195:                return V;
196:            }
197:
198:            @Override
199:            public DenseVector<F> getDiagonal() {
200:                int m = this .getNumberOfRows();
201:                int n = this .getNumberOfColumns();
202:                int dimension = MathLib.min(m, n);
203:                DenseVector<F> V = DenseVector.newInstance();
204:                for (int i = 0; i < dimension; i++) {
205:                    V._elements.add(this .get(i, i));
206:                }
207:                return V;
208:            }
209:
210:            @Override
211:            public DenseMatrix<F> opposite() {
212:                DenseMatrix<F> M = DenseMatrix.newInstance(_n, _transposed);
213:                for (int i = 0, p = _rows.size(); i < p; i++) {
214:                    M._rows.add(_rows.get(i).opposite());
215:                }
216:                return M;
217:            }
218:
219:            @Override
220:            public DenseMatrix<F> plus(Matrix<F> that) {
221:                if (this .getNumberOfRows() != that.getNumberOfRows())
222:                    throw new DimensionException();
223:                DenseMatrix<F> M = DenseMatrix.newInstance(_n, _transposed);
224:                for (int i = 0, p = _rows.size(); i < p; i++) {
225:                    M._rows.add(_rows.get(i).plus(
226:                            _transposed ? that.getColumn(i) : that.getRow(i)));
227:                }
228:                return M;
229:            }
230:
231:            @Override
232:            public DenseMatrix<F> minus(Matrix<F> that) { // Returns more specialized type.
233:                return this .plus(that.opposite());
234:            }
235:
236:            @Override
237:            public DenseMatrix<F> times(F k) {
238:                DenseMatrix<F> M = DenseMatrix.newInstance(_n, _transposed);
239:                for (int i = 0, p = _rows.size(); i < p; i++) {
240:                    M._rows.add(_rows.get(i).times(k));
241:                }
242:                return M;
243:            }
244:
245:            @Override
246:            public DenseVector<F> times(Vector<F> v) {
247:                if (v.getDimension() != this .getNumberOfColumns())
248:                    throw new DimensionException();
249:                final int m = this .getNumberOfRows();
250:                DenseVector<F> V = DenseVector.newInstance();
251:                for (int i = 0; i < m; i++) {
252:                    V._elements.add(this .getRow(i).times(v));
253:                }
254:                return V;
255:            }
256:
257:            @Override
258:            public DenseMatrix<F> times(Matrix<F> that) {
259:                final int n = this .getNumberOfColumns();
260:                final int m = this .getNumberOfRows();
261:                final int p = that.getNumberOfColumns();
262:                if (that.getNumberOfRows() != n)
263:                    throw new DimensionException();
264:                // Creates a mxp matrix in transposed form (p columns vectors of size m)
265:                DenseMatrix<F> M = DenseMatrix.newInstance(m, true); // Transposed.
266:                M._rows.setSize(p);
267:                Multiply<F> multiply = Multiply.valueOf(this , that, 0, p,
268:                        M._rows);
269:                multiply.run();
270:                Multiply.recycle(multiply);
271:                return M;
272:            }
273:
274:            // Logic to multiply two matrices. 
275:            private static class Multiply<F extends Field<F>> implements 
276:                    Runnable {
277:                private static final ObjectFactory<Multiply> FACTORY = new ObjectFactory<Multiply>() {
278:
279:                    @Override
280:                    protected Multiply create() {
281:                        return new Multiply();
282:                    }
283:                };
284:
285:                private DenseMatrix<F> _left;
286:
287:                private Matrix<F> _right;
288:
289:                private int _rightColumnStart;
290:
291:                private int _rightColumnEnd;
292:
293:                private FastTable<DenseVector<F>> _columnsResult;
294:
295:                @SuppressWarnings("unchecked")
296:                static <F extends Field<F>> Multiply<F> valueOf(
297:                        DenseMatrix<F> left, Matrix<F> right,
298:                        int rightColumnStart, int rightColumnEnd,
299:                        FastTable<DenseVector<F>> columnsResult) {
300:                    Multiply<F> multiply = Multiply.FACTORY.object();
301:                    multiply._left = left;
302:                    multiply._right = right;
303:                    multiply._rightColumnStart = rightColumnStart;
304:                    multiply._rightColumnEnd = rightColumnEnd;
305:                    multiply._columnsResult = columnsResult;
306:                    return multiply;
307:                }
308:
309:                static <F extends Field<F>> void recycle(Multiply<F> multiply) {
310:                    multiply._left = null;
311:                    multiply._right = null;
312:                    multiply._columnsResult = null;
313:                    Multiply.FACTORY.recycle(multiply);
314:                }
315:
316:                public void run() {
317:                    if (_rightColumnEnd - _rightColumnStart < 32) { // Direct calculation.
318:                        FastTable<DenseVector<F>> rows = _left.getRows();
319:                        final int m = rows.size();
320:                        for (int j = _rightColumnStart; j < _rightColumnEnd; j++) {
321:                            Vector<F> thatColj = _right.getColumn(j);
322:                            DenseVector<F> column = DenseVector.newInstance();
323:                            _columnsResult.set(j, column);
324:                            for (int i = 0; i < m; i++) {
325:                                column._elements.add(rows.get(i)
326:                                        .times(thatColj));
327:                            }
328:                        }
329:                    } else { // Concurrent/Recursive calculation.
330:                        int halfIndex = (_rightColumnStart + _rightColumnEnd) >> 1;
331:                        Multiply<F> firstHalf = Multiply.valueOf(_left, _right,
332:                                _rightColumnStart, halfIndex, _columnsResult);
333:                        Multiply<F> secondHalf = Multiply.valueOf(_left,
334:                                _right, halfIndex, _rightColumnEnd,
335:                                _columnsResult);
336:                        ConcurrentContext.enter();
337:                        try {
338:                            ConcurrentContext.execute(firstHalf);
339:                            ConcurrentContext.execute(secondHalf);
340:                        } finally {
341:                            ConcurrentContext.exit();
342:                        }
343:                        Multiply.recycle(firstHalf);
344:                        Multiply.recycle(secondHalf);
345:                    }
346:                }
347:            }
348:
349:            private FastTable<DenseVector<F>> getRows() {
350:                if (!_transposed)
351:                    return _rows;
352:                FastTable<DenseVector<F>> rows = FastTable.newInstance();
353:                for (int i = 0; i < _n; i++) {
354:                    rows.add(this .getRow(i));
355:                }
356:                return rows;
357:            }
358:
359:            @Override
360:            public DenseMatrix<F> inverse() {
361:                if (!isSquare())
362:                    throw new DimensionException("Matrix not square");
363:                return LUDecomposition.valueOf(this ).inverse();
364:            }
365:
366:            @Override
367:            public F determinant() {
368:                return LUDecomposition.valueOf(this ).determinant();
369:            }
370:
371:            @Override
372:            public DenseMatrix<F> transpose() {
373:                DenseMatrix<F> M = DenseMatrix.newInstance(_n, !_transposed);
374:                M._rows.addAll(this ._rows);
375:                return M;
376:            }
377:
378:            @Override
379:            public F cofactor(int i, int j) {
380:                if (_transposed) {
381:                    int k = i;
382:                    i = j;
383:                    j = k; // Swaps i,j
384:                }
385:                int m = _rows.size();
386:                DenseMatrix<F> M = DenseMatrix.newInstance(m - 1, _transposed);
387:                for (int k1 = 0; k1 < m; k1++) {
388:                    if (k1 == i)
389:                        continue;
390:                    DenseVector<F> row = _rows.get(k1);
391:                    DenseVector<F> V = DenseVector.newInstance();
392:                    M._rows.add(V);
393:                    for (int k2 = 0; k2 < _n; k2++) {
394:                        if (k2 == j)
395:                            continue;
396:                        V._elements.add(row.get(k2));
397:                    }
398:                }
399:                return M.determinant();
400:            }
401:
402:            @Override
403:            public DenseMatrix<F> adjoint() {
404:                DenseMatrix<F> M = DenseMatrix.newInstance(_n, _transposed);
405:                int m = _rows.size();
406:                for (int i = 0; i < m; i++) {
407:                    DenseVector<F> row = DenseVector.newInstance();
408:                    M._rows.add(row);
409:                    for (int j = 0; j < _n; j++) {
410:                        F cofactor = _transposed ? cofactor(j, i) : cofactor(i,
411:                                j);
412:                        row._elements.add(((i + j) % 2 == 0) ? cofactor
413:                                : cofactor.opposite());
414:                    }
415:                }
416:                return M.transpose();
417:            }
418:
419:            @Override
420:            public Matrix<F> tensor(Matrix<F> that) {
421:                final int this m = this .getNumberOfRows();
422:                final int this n = this .getNumberOfColumns();
423:                final int thatm = that.getNumberOfRows();
424:                final int thatn = that.getNumberOfColumns();
425:                int n = this n * thatn; // Number of columns,
426:                int m = this m * thatm; // Number of rows.
427:                DenseMatrix<F> M = DenseMatrix.newInstance(n, false);
428:                for (int i = 0; i < m; i++) { // Row index.
429:                    final int i_rem_thatm = i % thatm;
430:                    final int i_div_thatm = i / thatm;
431:                    DenseVector<F> row = DenseVector.newInstance();
432:                    M._rows.add(row);
433:                    for (int j = 0; j < this n; j++) {
434:                        F a = this .get(i_div_thatm, j);
435:                        for (int k = 0; k < thatn; k++) {
436:                            row._elements
437:                                    .add(a.times(that.get(i_rem_thatm, k)));
438:                        }
439:                    }
440:                }
441:                return M;
442:            }
443:
444:            @Override
445:            public Vector<F> vectorization() {
446:                DenseVector<F> V = DenseVector.newInstance();
447:                for (int j = 0, n = this .getNumberOfColumns(); j < n; j++) {
448:                    Vector<F> column = this .getColumn(j);
449:                    for (int i = 0, m = column.getDimension(); i < m; i++) {
450:                        V._elements.add(column.get(i));
451:                    }
452:                }
453:                return V;
454:            }
455:
456:            @Override
457:            public DenseMatrix<F> copy() {
458:                DenseMatrix<F> M = DenseMatrix.newInstance(_n, _transposed);
459:                for (DenseVector<F> row : _rows) {
460:                    M._rows.add(row.copy());
461:                }
462:                return M;
463:            }
464:
465:            ///////////////////////////////
466:            // Package Private Utilities //
467:            ///////////////////////////////
468:
469:            void set(int i, int j, F e) {
470:                if (_transposed) {
471:                    _rows.get(j)._elements.set(i, e);
472:                } else {
473:                    _rows.get(i)._elements.set(j, e);
474:                }
475:            }
476:
477:            ///////////////////////
478:            // Factory creation. //
479:            ///////////////////////
480:
481:            @SuppressWarnings("unchecked")
482:            static <F extends Field<F>> DenseMatrix<F> newInstance(int n,
483:                    boolean transposed) {
484:                DenseMatrix<F> M = FACTORY.object();
485:                M._n = n;
486:                M._transposed = transposed;
487:                return M;
488:            }
489:
490:            private static ObjectFactory<DenseMatrix> FACTORY = new ObjectFactory<DenseMatrix>() {
491:                @Override
492:                protected DenseMatrix create() {
493:                    return new DenseMatrix();
494:                }
495:
496:                @Override
497:                protected void cleanup(DenseMatrix matrix) {
498:                    matrix._rows.reset();
499:                }
500:            };
501:
502:            private DenseMatrix() {
503:            }
504:
505:            private static final long serialVersionUID = 1L;
506:
507:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.