Source Code Cross Referenced for SparseMatrix.java in  » Science » jscience-4.3.1 » org » jscience » mathematics » vector » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » jscience 4.3.1 » org.jscience.mathematics.vector 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * JScience - Java(TM) Tools and Libraries for the Advancement of Sciences.
003:         * Copyright (C) 2006 - JScience (http://jscience.org/)
004:         * All rights reserved.
005:         * 
006:         * Permission to use, copy, modify, and distribute this software is
007:         * freely granted, provided that this notice is preserved.
008:         */
009:        package org.jscience.mathematics.vector;
010:
011:        import java.util.Iterator;
012:        import java.util.List;
013:
014:        import javolution.context.ObjectFactory;
015:        import javolution.lang.MathLib;
016:        import javolution.util.FastComparator;
017:        import javolution.util.FastMap;
018:        import javolution.util.FastTable;
019:        import javolution.util.Index;
020:
021:        import org.jscience.mathematics.structure.Field;
022:
023:        /**
024:         * <p> This class represents a matrix made of {@link SparseVector sparse
025:         *     vectors} (as rows). To create a sparse matrix made of column vectors the 
026:         *     {@link #transpose} method can be used. 
027:         *     For example:[code]
028:         *        SparseVector<Rational> column0 = SparseVector.valueOf(...);
029:         *        SparseVector<Rational> column1 = SparseVector.valueOf(...);
030:         *        SparseMatrix<Rational> M = SparseMatrix.valueOf(column0, column1).transpose();
031:         *     [/code]</p>
032:         * <p> As for any concrete {@link org.jscience.mathematics.structure.Structure
033:         *     structure}, this class is declared <code>final</code> (otherwise most
034:         *     operations would have to be overridden to return the appropriate type).
035:         *     Specialized dense matrix should sub-class {@link Matrix} directly.
036:         *     For example:[code]
037:         *        // Extension through composition.
038:         *        final class BandMatrix <F extends Field<F>> extends Matrix<F> {
039:         *             private SparseMatrix<F> _value;
040:         *             ...
041:         *             public BandMatrix opposite() { // Returns the right type.
042:         *                 return BandMatrix.valueOf(_value.opposite());
043:         *             }
044:         *             ...
045:         *        }[/code]
046:         *     </p>   
047:         * @author <a href="mailto:jean-marie@dautelle.com">Jean-Marie Dautelle</a>
048:         * @version 3.3, January 2, 2007
049:         */
050:        public final class SparseMatrix<F extends Field<F>> extends Matrix<F> {
051:
052:            /**
053:             * Holds the number of columns n or the number of rows m if transposed.
054:             */
055:            int _n;
056:
057:            /**
058:             * Holds the zero.
059:             */
060:            F _zero;;
061:
062:            /**
063:             * Indicates if this matrix is transposed (the rows are then the columns).
064:             */
065:            boolean _transposed;
066:
067:            /**
068:             * Holds this matrix rows (or columns when transposed).
069:             */
070:            final FastTable<SparseVector<F>> _rows = new FastTable<SparseVector<F>>();
071:
072:            /**
073:             * Returns the sparse square matrix having the specified diagonal
074:             * vector. This method is typically used to create an identity matrix.
075:             * For example:[code]
076:             *      SparseMatrix<Real> IDENTITY = Matrix.valueOf(
077:             *           DenseVector.valueOf({Real.ONE, Real.ONE, Real.ONE}), Real.ZERO);
078:             * [/code]          
079:             *
080:             * @param  diagonal the diagonal vector.
081:             * @param  zero value of non-diagonal elements.
082:             * @return a square matrix with <code>diagonal</code> on the diagonal and
083:             *         <code>zero</code> elsewhere.
084:             */
085:            public static <F extends Field<F>> SparseMatrix<F> valueOf(
086:                    Vector<F> diagonal, F zero) {
087:                int n = diagonal.getDimension();
088:                SparseMatrix<F> M = SparseMatrix.newInstance(n, zero, false);
089:                for (int i = 0; i < n; i++) {
090:                    SparseVector<F> row = SparseVector.valueOf(n, zero, i,
091:                            diagonal.get(i));
092:                    M._rows.add(row);
093:                }
094:                return M;
095:            }
096:
097:            /**
098:             * Returns a sparse matrix holding the specified row vectors 
099:             * (column vectors if {@link #transpose transposed}).
100:             *
101:             * @param rows the row vectors.
102:             * @return the matrix having the specified rows.
103:             * @throws DimensionException if the rows do not have the same dimension.
104:             */
105:            public static <F extends Field<F>> SparseMatrix<F> valueOf(
106:                    SparseVector<F>... rows) {
107:                final int n = rows[0]._dimension;
108:                final F zero = rows[0]._zero;
109:                SparseMatrix<F> M = SparseMatrix.newInstance(n, zero, false);
110:                for (int i = 0, m = rows.length; i < m; i++) {
111:                    SparseVector<F> rowi = rows[i];
112:                    if (rowi._dimension != n)
113:                        throw new DimensionException(
114:                                "All vectors must have the same dimension.");
115:                    if (!zero.equals(rowi._zero))
116:                        throw new DimensionException(
117:                                "All vectors must have the same zero element.");
118:                    M._rows.add(rowi);
119:                }
120:                return M;
121:            }
122:
123:            /**
124:             * Returns a sparse matrix holding the row vectors from the specified 
125:             * collection (column vectors if {@link #transpose transposed}).
126:             *
127:             * @param rows the list of row vectors.
128:             * @return the matrix having the specified rows.
129:             * @throws DimensionException if the rows do not have the same dimension.
130:             */
131:            public static <F extends Field<F>> SparseMatrix<F> valueOf(
132:                    List<SparseVector<F>> rows) {
133:                final int n = rows.get(0)._dimension;
134:                final F zero = rows.get(0)._zero;
135:                SparseMatrix<F> M = SparseMatrix.newInstance(n, zero, false);
136:                Iterator<SparseVector<F>> iterator = rows.iterator();
137:                for (int i = 0, m = rows.size(); i < m; i++) {
138:                    SparseVector<F> rowi = iterator.next();
139:                    if (rowi.getDimension() != n)
140:                        throw new DimensionException(
141:                                "All vectors must have the same dimension.");
142:                    if (!zero.equals(rowi._zero))
143:                        throw new DimensionException(
144:                                "All vectors must have the same zero element.");
145:                    M._rows.add(rowi);
146:                }
147:                return M;
148:            }
149:
150:            /**
151:             * Returns a sparse matrix equivalent to the specified matrix but with 
152:             * the zero elements removed using the default object equality comparator.
153:             *
154:             * @param that the matrix to convert.
155:             * @param zero the zero element for the sparse vector to return.
156:             * @return <code>SparseMatrix.valueOf(that, zero, FastComparator.DEFAULT)</code> or a dense matrix holding the same elements
157:             */
158:            public static <F extends Field<F>> SparseMatrix<F> valueOf(
159:                    Matrix<F> that, F zero) {
160:                return SparseMatrix.valueOf(that, zero, FastComparator.DEFAULT);
161:            }
162:
163:            /**
164:             * Returns a sparse matrix equivalent to the specified matrix but with 
165:             * the zero elements removed using the specified object equality comparator.
166:             *
167:             * @param that the matrix to convert.
168:             * @param zero the zero element for the sparse vector to return.
169:             * @param comparator the comparator used to determinate zero equality. 
170:             * @return <code>that</code> or a dense matrix holding the same elements
171:             *         as the specified matrix.
172:             */
173:            public static <F extends Field<F>> SparseMatrix<F> valueOf(
174:                    Matrix<F> that, F zero, FastComparator<? super  F> comparator) {
175:                if (that instanceof  SparseMatrix)
176:                    return (SparseMatrix<F>) that;
177:                int n = that.getNumberOfColumns();
178:                int m = that.getNumberOfRows();
179:                SparseMatrix<F> M = SparseMatrix.newInstance(n, zero, false);
180:                for (int i = 0; i < m; i++) {
181:                    SparseVector<F> rowi = SparseVector.valueOf(that.getRow(i),
182:                            zero, comparator);
183:                    M._rows.add(rowi);
184:                }
185:                return M;
186:            }
187:
188:            /**
189:             * Returns the value of the non-set elements for this sparse matrix.
190:             * 
191:             * @return the element corresponding to zero.
192:             */
193:            public F getZero() {
194:                return _zero;
195:            }
196:
197:            @Override
198:            public int getNumberOfRows() {
199:                return _transposed ? _n : _rows.size();
200:            }
201:
202:            @Override
203:            public int getNumberOfColumns() {
204:                return _transposed ? _rows.size() : _n;
205:            }
206:
207:            @Override
208:            public F get(int i, int j) {
209:                return _transposed ? _rows.get(j).get(i) : _rows.get(i).get(j);
210:            }
211:
212:            @Override
213:            public SparseVector<F> getRow(int i) {
214:                if (!_transposed)
215:                    return _rows.get(i);
216:                // Else transposed.
217:                int n = _rows.size();
218:                int m = _n;
219:                if ((i < 0) || (i >= m))
220:                    throw new DimensionException();
221:                SparseVector<F> V = SparseVector.newInstance(n, _zero);
222:                for (int j = 0; j < n; j++) {
223:                    SparseVector<F> row = _rows.get(j);
224:                    F e = row._elements.get(Index.valueOf(i));
225:                    if (e != null) {
226:                        V._elements.put(Index.valueOf(j), e);
227:                    }
228:                }
229:                return V;
230:            }
231:
232:            @Override
233:            public SparseVector<F> getColumn(int j) {
234:                if (_transposed)
235:                    return _rows.get(j);
236:                int m = _rows.size();
237:                if ((j < 0) || (j >= _n))
238:                    throw new DimensionException();
239:                SparseVector<F> V = SparseVector.newInstance(_n, _zero);
240:                for (int i = 0; i < m; i++) {
241:                    SparseVector<F> row = _rows.get(i);
242:                    F e = row._elements.get(Index.valueOf(j));
243:                    if (e != null) {
244:                        V._elements.put(Index.valueOf(i), e);
245:                    }
246:                }
247:                return V;
248:            }
249:
250:            @Override
251:            public SparseVector<F> getDiagonal() {
252:                int m = this .getNumberOfRows();
253:                int n = this .getNumberOfColumns();
254:                int dimension = MathLib.min(m, n);
255:                SparseVector<F> V = SparseVector.newInstance(_n, _zero);
256:                for (int i = 0; i < dimension; i++) {
257:                    SparseVector<F> row = _rows.get(i);
258:                    F e = row._elements.get(Index.valueOf(i));
259:                    if (e != null) {
260:                        V._elements.put(Index.valueOf(i), e);
261:                    }
262:                }
263:                return V;
264:            }
265:
266:            @Override
267:            public SparseMatrix<F> opposite() {
268:                SparseMatrix<F> M = SparseMatrix.newInstance(_n, _zero,
269:                        _transposed);
270:                for (int i = 0, p = _rows.size(); i < p; i++) {
271:                    M._rows.add(_rows.get(i).opposite());
272:                }
273:                return M;
274:            }
275:
276:            @Override
277:            public SparseMatrix<F> plus(Matrix<F> that) {
278:                if (this .getNumberOfRows() != that.getNumberOfRows())
279:                    throw new DimensionException();
280:                SparseMatrix<F> M = SparseMatrix.newInstance(_n, _zero,
281:                        _transposed);
282:                for (int i = 0, p = _rows.size(); i < p; i++) {
283:                    M._rows.add(_rows.get(i).plus(
284:                            _transposed ? that.getColumn(i) : that.getRow(i)));
285:                }
286:                return M;
287:            }
288:
289:            @Override
290:            public SparseMatrix<F> minus(Matrix<F> that) { // Returns more specialized type.
291:                return this .plus(that.opposite());
292:            }
293:
294:            @Override
295:            public SparseMatrix<F> times(F k) {
296:                SparseMatrix<F> M = SparseMatrix.newInstance(_n, _zero,
297:                        _transposed);
298:                for (int i = 0, p = _rows.size(); i < p; i++) {
299:                    M._rows.add(_rows.get(i).times(k));
300:                }
301:                return M;
302:            }
303:
304:            @Override
305:            public SparseVector<F> times(Vector<F> v) {
306:                if (v.getDimension() != this .getNumberOfColumns())
307:                    throw new DimensionException();
308:                final int m = this .getNumberOfRows();
309:                SparseVector<F> V = SparseVector.newInstance(m, _zero);
310:                for (int i = 0; i < m; i++) {
311:                    F e = this .getRow(i).times(v);
312:                    if (!_zero.equals(e)) {
313:                        V._elements.put(Index.valueOf(i), e);
314:                    }
315:                }
316:                return V;
317:            }
318:
319:            @Override
320:            public SparseMatrix<F> times(Matrix<F> that) {
321:                final int m = this .getNumberOfRows();
322:                final int n = this .getNumberOfColumns();
323:                final int p = that.getNumberOfColumns();
324:                if (that.getNumberOfRows() != n)
325:                    throw new DimensionException();
326:                // Creates a mxp matrix in transposed form (p columns vectors of size m)
327:                FastTable<SparseVector<F>> rows = this .getRows();
328:                SparseMatrix<F> M = SparseMatrix.newInstance(m, _zero, true);
329:                for (int j = 0; j < p; j++) {
330:                    Vector<F> thatColj = that.getColumn(j);
331:                    SparseVector<F> column = SparseVector.newInstance(m, _zero);
332:                    M._rows.add(column); // M is transposed.
333:                    for (int i = 0; i < m; i++) {
334:                        F e = rows.get(i).times(thatColj);
335:                        if (!_zero.equals(e)) {
336:                            column._elements.put(Index.valueOf(i), e);
337:                        }
338:                    }
339:                }
340:                return M;
341:            }
342:
343:            private FastTable<SparseVector<F>> getRows() {
344:                if (!_transposed)
345:                    return _rows;
346:                FastTable<SparseVector<F>> rows = FastTable.newInstance();
347:                for (int i = 0; i < _n; i++) {
348:                    rows.add(this .getRow(i));
349:                }
350:                return rows;
351:            }
352:
353:            @Override
354:            public SparseMatrix<F> inverse() {
355:                if (!isSquare())
356:                    throw new DimensionException("Matrix not square");
357:                F detInv = this .determinant().inverse();
358:                SparseMatrix<F> A = this .adjoint();
359:                // Multiply adjoint elements with 1 / determinant.
360:                for (int i = 0, m = A._rows.size(); i < m; i++) {
361:                    SparseVector<F> row = A._rows.get(i);
362:                    for (FastMap.Entry<Index, F> e = row._elements.head(), end = row._elements
363:                            .tail(); (e = e.getNext()) != end;) {
364:                        F element = e.getValue();
365:                        e.setValue(detInv.times(element));
366:                    }
367:                }
368:                return A;
369:            }
370:
371:            @Override
372:            public F determinant() {
373:                if (!isSquare())
374:                    throw new DimensionException("Matrix not square");
375:                if (_n == 1)
376:                    return this .get(0, 0);
377:                // Expansion by minors (also known as Laplacian)
378:                // This algorithm is division free but too slow for dense matrix.
379:                SparseVector<F> row0 = this .getRow(0);
380:                F det = null;
381:                for (FastMap.Entry<Index, F> e = row0._elements.head(), end = row0._elements
382:                        .tail(); (e = e.getNext()) != end;) {
383:                    int i = e.getKey().intValue();
384:                    F d = e.getValue().times(cofactor(0, i));
385:                    if (i % 2 != 0) {
386:                        d = d.opposite();
387:                    }
388:                    det = (det == null) ? d : det.plus(d);
389:                }
390:                return det == null ? _zero : det;
391:            }
392:
393:            @Override
394:            public Matrix<F> solve(Matrix<F> y) {
395:                return this .inverse().times(y);
396:            }
397:
398:            @Override
399:            public SparseMatrix<F> transpose() {
400:                SparseMatrix<F> M = SparseMatrix.newInstance(_n, _zero,
401:                        !_transposed);
402:                M._rows.addAll(this ._rows);
403:                return M;
404:            }
405:
406:            @Override
407:            public F cofactor(int i, int j) {
408:                if (_transposed) {
409:                    int k = i;
410:                    i = j;
411:                    j = k; // Swaps i,j
412:                }
413:                int m = _rows.size();
414:                SparseMatrix<F> M = SparseMatrix.newInstance(m - 1, _zero,
415:                        _transposed);
416:                for (int k1 = 0; k1 < m; k1++) {
417:                    if (k1 == i)
418:                        continue;
419:                    SparseVector<F> row = _rows.get(k1);
420:                    SparseVector<F> V = SparseVector.newInstance(_n - 1, _zero);
421:                    M._rows.add(V);
422:                    for (FastMap.Entry<Index, F> e = row._elements.head(), end = row._elements
423:                            .tail(); (e = e.getNext()) != end;) {
424:                        int index = e.getKey().intValue();
425:                        if (index < j) {
426:                            V._elements.put(e.getKey(), e.getValue());
427:                        } else if (index > j) { // Position shifted (index minus one).
428:                            V._elements.put(Index.valueOf(index - 1), e
429:                                    .getValue());
430:                        } // Else don't copy element at j.
431:                    }
432:                }
433:                return M.determinant();
434:            }
435:
436:            @Override
437:            public SparseMatrix<F> adjoint() {
438:                SparseMatrix<F> M = SparseMatrix.newInstance(_n, _zero,
439:                        _transposed);
440:                int m = _rows.size();
441:                for (int i = 0; i < m; i++) {
442:                    SparseVector<F> row = SparseVector.newInstance(_n, _zero);
443:                    M._rows.add(row);
444:                    for (int j = 0; j < _n; j++) {
445:                        F cofactor = _transposed ? cofactor(j, i) : cofactor(i,
446:                                j);
447:                        if (!_zero.equals(cofactor)) {
448:                            row._elements.put(Index.valueOf(j),
449:                                    ((i + j) % 2 == 0) ? cofactor : cofactor
450:                                            .opposite());
451:                        }
452:                    }
453:                }
454:                return M.transpose();
455:            }
456:
457:            @Override
458:            public SparseMatrix<F> tensor(Matrix<F> that) {
459:                final int this m = this .getNumberOfRows();
460:                final int this n = this .getNumberOfColumns();
461:                final int thatm = that.getNumberOfRows();
462:                final int thatn = that.getNumberOfColumns();
463:                int n = this n * thatn; // Number of columns,
464:                int m = this m * thatm; // Number of rows.
465:                SparseMatrix<F> M = SparseMatrix.newInstance(n, _zero, false);
466:                for (int i = 0; i < m; i++) { // Row index.
467:                    final int i_rem_thatm = i % thatm;
468:                    final int i_div_thatm = i / thatm;
469:                    SparseVector<F> row = SparseVector.newInstance(n, _zero);
470:                    M._rows.add(row);
471:                    SparseVector<F> this Row = this .getRow(i_div_thatm);
472:                    for (FastMap.Entry<Index, F> e = this Row._elements.head(), end = this Row._elements
473:                            .tail(); (e = e.getNext()) != end;) {
474:                        F a = e.getValue();
475:                        int j = e.getKey().intValue();
476:                        for (int k = 0; k < thatn; k++) {
477:                            F b = that.get(i_rem_thatm, k);
478:                            if (!b.equals(_zero)) {
479:                                row._elements.put(Index.valueOf(j * thatn + k),
480:                                        a.times(b));
481:                            }
482:                        }
483:                    }
484:                }
485:                return M;
486:            }
487:
488:            @Override
489:            public SparseVector<F> vectorization() {
490:                SparseVector<F> V = SparseVector.newInstance(_n
491:                        * this .getNumberOfRows(), _zero);
492:                int offset = 0;
493:                for (int j = 0, n = this .getNumberOfColumns(); j < n; j++) {
494:                    SparseVector<F> column = this .getColumn(j);
495:                    for (FastMap.Entry<Index, F> e = column._elements.head(), end = column._elements
496:                            .tail(); (e = e.getNext()) != end;) {
497:                        V._elements.put(Index.valueOf(e.getKey().intValue()
498:                                + offset), e.getValue());
499:                    }
500:                    offset += this .getNumberOfRows();
501:                }
502:                return V;
503:            }
504:
505:            @SuppressWarnings("unchecked")
506:            @Override
507:            public SparseMatrix<F> copy() {
508:                SparseMatrix<F> M = newInstance(_n, (F) _zero.copy(),
509:                        _transposed);
510:                for (SparseVector<F> row : _rows) {
511:                    M._rows.add(row.copy());
512:                }
513:                return M;
514:            }
515:
516:            ///////////////////////
517:            // Factory creation. //
518:            ///////////////////////
519:
520:            @SuppressWarnings("unchecked")
521:            static <F extends Field<F>> SparseMatrix<F> newInstance(int n,
522:                    F zero, boolean transposed) {
523:                SparseMatrix<F> M = FACTORY.object();
524:                M._n = n;
525:                M._zero = zero;
526:                M._transposed = transposed;
527:                return M;
528:            }
529:
530:            private static final ObjectFactory<SparseMatrix> FACTORY = new ObjectFactory<SparseMatrix>() {
531:                @Override
532:                protected SparseMatrix create() {
533:                    return new SparseMatrix();
534:                }
535:
536:                @Override
537:                protected void cleanup(SparseMatrix matrix) {
538:                    matrix._rows.reset();
539:                }
540:            };
541:
542:            private SparseMatrix() {
543:            }
544:
545:            private static final long serialVersionUID = 1L;
546:
547:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.