Source Code Cross Referenced for RealNum.java in  » Scripting » Kawa » gnu » math » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Scripting » Kawa » gnu.math 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        // Copyright (c) 1997, 2004, 2006  Per M.A. Bothner.
002:        // This is free software;  for terms and warranty disclaimer see ./COPYING.
003:
004:        package gnu.math;
005:
006:        import java.math.BigDecimal;
007:
008:        public abstract class RealNum extends Complex
009:        /* #ifdef JAVA2 */
010:        implements  Comparable
011:        /* #endif */
012:        {
013:            public final RealNum re() {
014:                return this ;
015:            }
016:
017:            public final RealNum im() {
018:                return IntNum.zero();
019:            }
020:
021:            public abstract boolean isNegative();
022:
023:            /** Return 1 if >0; 0 if ==0; -1 if <0; -2 if NaN. */
024:            public abstract int sign();
025:
026:            public RealNum max(RealNum x) {
027:                boolean exact = isExact() && x.isExact();
028:                RealNum result = grt(x) ? this  : x;
029:                if (!exact && result.isExact())
030:                    result = new DFloNum(result.doubleValue());
031:                return result;
032:            }
033:
034:            public RealNum min(RealNum x) {
035:                boolean exact = isExact() && x.isExact();
036:                RealNum result = grt(x) ? x : this ;
037:                if (!exact && result.isExact())
038:                    result = new DFloNum(result.doubleValue());
039:                return result;
040:            }
041:
042:            public static RealNum add(RealNum x, RealNum y, int k) {
043:                return (RealNum) (x.add(y, k));
044:            }
045:
046:            public static RealNum times(RealNum x, RealNum y) {
047:                return (RealNum) (x.mul(y));
048:            }
049:
050:            public static RealNum divide(RealNum x, RealNum y) {
051:                return (RealNum) (x.div(y));
052:            }
053:
054:            /* These are defined in Complex, but have to be overridden. */
055:            public abstract Numeric add(Object obj, int k);
056:
057:            public abstract Numeric mul(Object obj);
058:
059:            public abstract Numeric div(Object obj);
060:
061:            public Numeric abs() {
062:                return isNegative() ? neg() : this ;
063:            }
064:
065:            public final RealNum rneg() {
066:                return (RealNum) neg();
067:            }
068:
069:            public boolean isZero() {
070:                return sign() == 0;
071:            }
072:
073:            /** Convert to an exact number.
074:             * Implements the Scheme inexact->exact (for real numbers).
075:             */
076:            public RatNum toExact() {
077:                return DFloNum.toExact(doubleValue());
078:            }
079:
080:            /** Converts a real to an integer, according to a specified rounding mode.
081:             * Note an inexact argument gives an inexact result, following Scheme.
082:             * See also RatNum.toExactInt. */
083:            public static double toInt(double d, int rounding_mode) {
084:                switch (rounding_mode) {
085:                case FLOOR:
086:                    return Math.floor(d);
087:                case CEILING:
088:                    return Math.ceil(d);
089:                case TRUNCATE:
090:                    return d < 0.0 ? Math.ceil(d) : Math.floor(d);
091:                case ROUND:
092:                    return Math.rint(d);
093:                default: // Illegal rounding_mode
094:                    return d;
095:                }
096:            }
097:
098:            /** Converts a real to an integer, according to a specified rounding mode.
099:             * Note an inexact argument gives an inexact result, following Scheme.
100:             * See also toExactInt. */
101:            public RealNum toInt(int rounding_mode) {
102:                return new DFloNum(toInt(doubleValue(), rounding_mode));
103:            }
104:
105:            /** Converts to an exact integer, with specified rounding mode. */
106:            public IntNum toExactInt(int rounding_mode) {
107:                return toExactInt(doubleValue(), rounding_mode);
108:            }
109:
110:            /** Converts real to an exact integer, with specified rounding mode. */
111:            public static IntNum toExactInt(double value, int rounding_mode) {
112:                return toExactInt(toInt(value, rounding_mode));
113:            }
114:
115:            /** Converts an integral double (such as a toInt result) to an IntNum. */
116:            public static IntNum toExactInt(double value) {
117:                if (Double.isInfinite(value) || Double.isNaN(value))
118:                    throw new ArithmeticException("cannot convert " + value
119:                            + " to exact integer");
120:                long bits = Double.doubleToLongBits(value);
121:                boolean neg = bits < 0;
122:                int exp = (int) (bits >> 52) & 0x7FF;
123:                bits &= 0xfffffffffffffL;
124:                if (exp == 0)
125:                    bits <<= 1;
126:                else
127:                    bits |= 0x10000000000000L;
128:                if (exp <= 1075) {
129:                    int rshift = 1075 - exp;
130:                    if (rshift > 53)
131:                        return IntNum.zero();
132:                    bits >>= rshift;
133:                    return IntNum.make(neg ? -bits : bits);
134:                }
135:                return IntNum
136:                        .shift(IntNum.make(neg ? -bits : bits), exp - 1075);
137:            }
138:
139:            public Complex exp() {
140:                return new DFloNum(Math.exp(doubleValue()));
141:            }
142:
143:            public Complex log() {
144:                double x = doubleValue();
145:                if (x < 0)
146:                    return DComplex.log(x, 0.0);
147:                return new DFloNum(Math.log(x));
148:            }
149:
150:            public final Complex sin() {
151:                return new DFloNum(Math.sin(doubleValue()));
152:            }
153:
154:            public final Complex sqrt() {
155:                double d = doubleValue();
156:                if (d >= 0)
157:                    return new DFloNum(Math.sqrt(d));
158:                else
159:                    return DComplex.sqrt(d, 0);
160:            }
161:
162:            /** Convert double to (rounded) integer, after multiplying by 10**k. */
163:            public static IntNum toScaledInt(double f, int k) {
164:                return toScaledInt(DFloNum.toExact(f), k);
165:            }
166:
167:            /** Convert rational to (rounded) integer, after multiplying by 10**k. */
168:            public static IntNum toScaledInt(RatNum r, int k) {
169:                if (k != 0) {
170:                    IntNum power = IntNum.power(IntNum.ten(), k < 0 ? -k : k);
171:                    IntNum num = r.numerator();
172:                    IntNum den = r.denominator();
173:                    if (k >= 0)
174:                        num = IntNum.times(num, power);
175:                    else
176:                        den = IntNum.times(den, power);
177:                    r = RatNum.make(num, den);
178:                }
179:                return r.toExactInt(ROUND);
180:            }
181:
182:            /** Convert this to (rounded) integer, after multiplying by 10**k. */
183:            public IntNum toScaledInt(int k) {
184:                return toScaledInt(toExact(), k);
185:            }
186:
187:            /*
188:            public static String toScaledIntString (double f, int k)
189:            {
190:              switch (k)
191:                {
192:                case 0:  break;
193:                case 1:  f = f * 10;  break;
194:                case 2:  f = f * 100;  break;
195:                case 3:  f = f * 1000;  break;
196:                default: return toScaledInt(f, k).toString();
197:                }
198:              return Long.toString((long) f);
199:            }
200:             */
201:
202:            /** Implements the Comparable interface.
203:             * This ordering isn't fully consistent with equals, since say
204:             * it returns 0 when comparing 1.5 and 3/2, though they are not equals.
205:             */
206:            public int compareTo(Object o) {
207:                return compare(o);
208:            }
209:
210:            public java.math.BigDecimal asBigDecimal() {
211:                return new BigDecimal(doubleValue());
212:            }
213:
214:            public static String toStringScientific(float d) {
215:                return toStringScientific(Float.toString(d));
216:            }
217:
218:            public static String toStringScientific(double d) {
219:                return toStringScientific(Double.toString(d));
220:            }
221:
222:            /** Convert result of Double.toString or Float.toString to
223:             * scientific notation.
224:             * Does not validate the input.
225:             */
226:            public static String toStringScientific(String dstr) {
227:                int indexE = dstr.indexOf('E');
228:                if (indexE >= 0)
229:                    return dstr;
230:                int len = dstr.length();
231:                // Check for "Infinity" or "NaN".
232:                char ch = dstr.charAt(len - 1);
233:                if (ch == 'y' || ch == 'N')
234:                    return dstr;
235:                StringBuffer sbuf = new StringBuffer(len + 10);
236:                int exp = toStringScientific(dstr, sbuf);
237:                sbuf.append('E');
238:                sbuf.append(exp);
239:                return sbuf.toString();
240:            }
241:
242:            public static int toStringScientific(String dstr, StringBuffer sbuf) {
243:                boolean neg = dstr.charAt(0) == '-';
244:                if (neg)
245:                    sbuf.append('-');
246:                int pos = neg ? 1 : 0;
247:                int exp;
248:                int len = dstr.length();
249:                if (dstr.charAt(pos) == '0') { // Value is < 1.0.
250:                    int start = pos;
251:                    for (;;) {
252:                        if (pos == len) {
253:                            sbuf.append("0");
254:                            exp = 0;
255:                            break;
256:                        }
257:                        char ch = dstr.charAt(pos++);
258:                        if (ch >= '0' && ch <= '9' && (ch != '0' || pos == len)) {
259:                            sbuf.append(ch);
260:                            sbuf.append('.');
261:                            exp = ch == '0' ? 0 : start - pos + 2;
262:                            if (pos == len)
263:                                sbuf.append('0');
264:                            else {
265:                                while (pos < len)
266:                                    sbuf.append(dstr.charAt(pos++));
267:                            }
268:                            break;
269:                        }
270:                    }
271:                } else {
272:                    // Number of significant digits in string.
273:                    int ndigits = len - (neg ? 2 : 1);
274:                    int dot = dstr.indexOf('.');
275:                    // Number of fractional digits is len-dot-1.
276:                    // We want ndigits-1 fractional digits.  Hence we need to move the
277:                    // decimal point ndigits-1-(len-dot-1) == ndigits-len+dot positions
278:                    // to the left. This becomes the exponent we need.
279:                    exp = ndigits - len + dot;
280:                    sbuf.append(dstr.charAt(pos++)); // Copy initial digit before point.
281:                    sbuf.append('.');
282:                    while (pos < len) {
283:                        char ch = dstr.charAt(pos++);
284:                        if (ch != '.')
285:                            sbuf.append(ch);
286:                    }
287:                }
288:                // Remove excess zeros.
289:                pos = sbuf.length();
290:                int slen = -1;
291:                for (;;) {
292:                    char ch = sbuf.charAt(--pos);
293:                    if (ch == '0')
294:                        slen = pos;
295:                    else {
296:                        if (ch == '.')
297:                            slen = pos + 2;
298:                        break;
299:                    }
300:                }
301:                if (slen >= 0)
302:                    sbuf.setLength(slen);
303:                return exp;
304:            }
305:
306:            public static String toStringDecimal(String dstr) {
307:                int indexE = dstr.indexOf('E');
308:                if (indexE < 0)
309:                    return dstr;
310:                int len = dstr.length();
311:                // Check for "Infinity" or "NaN".
312:                char ch = dstr.charAt(len - 1);
313:                if (ch == 'y' || ch == 'N')
314:                    return dstr;
315:                StringBuffer sbuf = new StringBuffer(len + 10);
316:                boolean neg = dstr.charAt(0) == '-';
317:                if (dstr.charAt(indexE + 1) != '-') {
318:                    throw new Error(
319:                            "not implemented: toStringDecimal given non-negative exponent: "
320:                                    + dstr);
321:                } else {
322:                    int pos = indexE + 2; // skip "E-".
323:                    int exp = 0;
324:                    while (pos < len)
325:                        exp = 10 * exp + (dstr.charAt(pos++) - '0');
326:                    if (neg)
327:                        sbuf.append('-');
328:                    sbuf.append("0.");
329:                    while (--exp > 0)
330:                        sbuf.append('0');
331:                    for (pos = 0; (ch = dstr.charAt(pos++)) != 'E';) {
332:                        if (ch != '-' & ch != '.'
333:                                && (ch != '0' || pos < indexE))
334:                            sbuf.append(ch);
335:                    }
336:                    return sbuf.toString();
337:                }
338:            }
339:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.