Source Code Cross Referenced for Whirlpool.java in  » Web-Framework » rife-1.6.1 » com » uwyn » rife » tools » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Web Framework » rife 1.6.1 » com.uwyn.rife.tools 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /**
002:         * The Whirlpool hashing function.
003:         *
004:         * <P>
005:         * <b>References</b>
006:         *
007:         * <P>
008:         * The Whirlpool algorithm was developed by
009:         * <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
010:         * <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
011:         *
012:         * See
013:         *      P.S.L.M. Barreto, V. Rijmen,
014:         *      ``The Whirlpool hashing function,''
015:         *      First NESSIE workshop, 2000 (tweaked version, 2003),
016:         *      <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
017:         *
018:         * @author    Paulo S.L.M. Barreto
019:         * @author    Vincent Rijmen.
020:         *
021:         * @version 3.0 (2003.03.12)
022:         *
023:         * =============================================================================
024:         *
025:         * Differences from version 2.1:
026:         *
027:         * - Suboptimal diffusion matrix replaced by cir(1, 1, 4, 1, 8, 5, 2, 9).
028:         *
029:         * =============================================================================
030:         *
031:         * Differences from version 2.0:
032:         *
033:         * - Generation of ISO/IEC 10118-3 test vectors.
034:         * - Bug fix: nonzero carry was ignored when tallying the data length
035:         *      (this bug apparently only manifested itself when feeding data
036:         *      in pieces rather than in a single chunk at once).
037:         *
038:         * Differences from version 1.0:
039:         *
040:         * - Original S-box replaced by the tweaked, hardware-efficient version.
041:         *
042:         * =============================================================================
043:         *
044:         * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
045:         * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
046:         * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
047:         * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
048:         * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
049:         * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
050:         * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
051:         * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
052:         * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
053:         * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
054:         * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
055:         *
056:         */package com.uwyn.rife.tools;
057:
058:        import java.util.Arrays;
059:
060:        class Whirlpool {
061:
062:            /**
063:             * The message digest size (in bits)
064:             */
065:            public static final int DIGESTBITS = 512;
066:
067:            /**
068:             * The message digest size (in bytes)
069:             */
070:            public static final int DIGESTBYTES = DIGESTBITS >>> 3;
071:
072:            /**
073:             * The number of rounds of the internal dedicated block cipher.
074:             */
075:            protected static final int R = 10;
076:
077:            /**
078:             * The substitution box.
079:             */
080:            private static final String sbox = "\u1823\uc6E8\u87B8\u014F\u36A6\ud2F5\u796F\u9152"
081:                    + "\u60Bc\u9B8E\uA30c\u7B35\u1dE0\ud7c2\u2E4B\uFE57"
082:                    + "\u1577\u37E5\u9FF0\u4AdA\u58c9\u290A\uB1A0\u6B85"
083:                    + "\uBd5d\u10F4\ucB3E\u0567\uE427\u418B\uA77d\u95d8"
084:                    + "\uFBEE\u7c66\udd17\u479E\ucA2d\uBF07\uAd5A\u8333"
085:                    + "\u6302\uAA71\uc819\u49d9\uF2E3\u5B88\u9A26\u32B0"
086:                    + "\uE90F\ud580\uBEcd\u3448\uFF7A\u905F\u2068\u1AAE"
087:                    + "\uB454\u9322\u64F1\u7312\u4008\uc3Ec\udBA1\u8d3d"
088:                    + "\u9700\ucF2B\u7682\ud61B\uB5AF\u6A50\u45F3\u30EF"
089:                    + "\u3F55\uA2EA\u65BA\u2Fc0\udE1c\uFd4d\u9275\u068A"
090:                    + "\uB2E6\u0E1F\u62d4\uA896\uF9c5\u2559\u8472\u394c"
091:                    + "\u5E78\u388c\ud1A5\uE261\uB321\u9c1E\u43c7\uFc04"
092:                    + "\u5199\u6d0d\uFAdF\u7E24\u3BAB\ucE11\u8F4E\uB7EB"
093:                    + "\u3c81\u94F7\uB913\u2cd3\uE76E\uc403\u5644\u7FA9"
094:                    + "\u2ABB\uc153\udc0B\u9d6c\u3174\uF646\uAc89\u14E1"
095:                    + "\u163A\u6909\u70B6\ud0Ed\ucc42\u98A4\u285c\uF886";
096:
097:            private static long[][] C = new long[8][256];
098:            private static long[] rc = new long[R + 1];
099:
100:            static {
101:                for (int x = 0; x < 256; x++) {
102:                    char c = sbox.charAt(x / 2);
103:                    long v1 = ((x & 1) == 0) ? c >>> 8 : c & 0xff;
104:                    long v2 = v1 << 1;
105:                    if (v2 >= 0x100L) {
106:                        v2 ^= 0x11dL;
107:                    }
108:                    long v4 = v2 << 1;
109:                    if (v4 >= 0x100L) {
110:                        v4 ^= 0x11dL;
111:                    }
112:                    long v5 = v4 ^ v1;
113:                    long v8 = v4 << 1;
114:                    if (v8 >= 0x100L) {
115:                        v8 ^= 0x11dL;
116:                    }
117:                    long v9 = v8 ^ v1;
118:                    /*
119:                     * build the circulant table C[0][x] = S[x].[1, 1, 4, 1, 8, 5, 2, 9]:
120:                     */
121:                    C[0][x] = (v1 << 56) | (v1 << 48) | (v4 << 40) | (v1 << 32)
122:                            | (v8 << 24) | (v5 << 16) | (v2 << 8) | (v9);
123:                    /*
124:                     * build the remaining circulant tables C[t][x] = C[0][x] rotr t
125:                     */
126:                    for (int t = 1; t < 8; t++) {
127:                        C[t][x] = (C[t - 1][x] >>> 8) | ((C[t - 1][x] << 56));
128:                    }
129:                }
130:                /*
131:                for (int t = 0; t < 8; t++) {
132:                    System.out.println("static const u64 C" + t + "[256] = {");
133:                    for (int i = 0; i < 64; i++) {
134:                        System.out.print("   ");
135:                        for (int j = 0; j < 4; j++) {
136:                            String v = Long.toHexString(C[t][4*i + j]);
137:                            while (v.length() < 16) {
138:                                v = "0" + v;
139:                            }
140:                            System.out.print(" LL(0x" + v + "),");
141:                        }
142:                        System.out.println();
143:                    }
144:                    System.out.println("};");
145:                    System.out.println();
146:                }
147:                System.out.println();
148:                //*/
149:
150:                /*
151:                 * build the round constants:
152:                 */
153:                rc[0] = 0L; /* not used (assigment kept only to properly initialize all variables) */
154:                for (int r = 1; r <= R; r++) {
155:                    int i = 8 * (r - 1);
156:                    rc[r] = (C[0][i] & 0xff00000000000000L)
157:                            ^ (C[1][i + 1] & 0x00ff000000000000L)
158:                            ^ (C[2][i + 2] & 0x0000ff0000000000L)
159:                            ^ (C[3][i + 3] & 0x000000ff00000000L)
160:                            ^ (C[4][i + 4] & 0x00000000ff000000L)
161:                            ^ (C[5][i + 5] & 0x0000000000ff0000L)
162:                            ^ (C[6][i + 6] & 0x000000000000ff00L)
163:                            ^ (C[7][i + 7] & 0x00000000000000ffL);
164:                }
165:                /*
166:                System.out.println("static const u64 rc[R + 1] = {");
167:                for (int r = 0; r <= R; r++) {
168:                    String v = Long.toHexString(rc[r]);
169:                    while (v.length() < 16) {
170:                        v = "0" + v;
171:                    }
172:                    System.out.println("    LL(0x" + v + "),");
173:                }
174:                System.out.println("};");
175:                System.out.println();
176:                //*/
177:            }
178:
179:            /**
180:             * Global number of hashed bits (256-bit counter).
181:             */
182:            protected byte[] bitLength = new byte[32];
183:
184:            /**
185:             * Buffer of data to hash.
186:             */
187:            protected byte[] buffer = new byte[64];
188:
189:            /**
190:             * Current number of bits on the buffer.
191:             */
192:            protected int bufferBits = 0;
193:
194:            /**
195:             * Current (possibly incomplete) byte slot on the buffer.
196:             */
197:            protected int bufferPos = 0;
198:
199:            /**
200:             * The hashing state.
201:             */
202:            protected long[] hash = new long[8];
203:            protected long[] K = new long[8]; // the round key
204:            protected long[] L = new long[8];
205:            protected long[] block = new long[8]; // mu(buffer)
206:            protected long[] state = new long[8]; // the cipher state
207:
208:            public Whirlpool() {
209:            }
210:
211:            /**
212:             * The core Whirlpool transform.
213:             */
214:            protected void processBuffer() {
215:                /*
216:                 * map the buffer to a block:
217:                 */
218:                for (int i = 0, j = 0; i < 8; i++, j += 8) {
219:                    block[i] = (((long) buffer[j]) << 56)
220:                            ^ (((long) buffer[j + 1] & 0xffL) << 48)
221:                            ^ (((long) buffer[j + 2] & 0xffL) << 40)
222:                            ^ (((long) buffer[j + 3] & 0xffL) << 32)
223:                            ^ (((long) buffer[j + 4] & 0xffL) << 24)
224:                            ^ (((long) buffer[j + 5] & 0xffL) << 16)
225:                            ^ (((long) buffer[j + 6] & 0xffL) << 8)
226:                            ^ (((long) buffer[j + 7] & 0xffL));
227:                }
228:                /*
229:                 * compute and apply K^0 to the cipher state:
230:                 */
231:                for (int i = 0; i < 8; i++) {
232:                    state[i] = block[i] ^ (K[i] = hash[i]);
233:                }
234:                /*
235:                 * iterate over all rounds:
236:                 */
237:                for (int r = 1; r <= R; r++) {
238:                    /*
239:                     * compute K^r from K^{r-1}:
240:                     */
241:                    for (int i = 0; i < 8; i++) {
242:                        L[i] = 0L;
243:                        for (int t = 0, s = 56; t < 8; t++, s -= 8) {
244:                            L[i] ^= C[t][(int) (K[(i - t) & 7] >>> s) & 0xff];
245:                        }
246:                    }
247:                    System.arraycopy(L, 0, K, 0, 8);
248:                    K[0] ^= rc[r];
249:                    /*
250:                     * apply the r-th round transformation:
251:                     */
252:                    for (int i = 0; i < 8; i++) {
253:                        L[i] = K[i];
254:                        for (int t = 0, s = 56; t < 8; t++, s -= 8) {
255:                            L[i] ^= C[t][(int) (state[(i - t) & 7] >>> s) & 0xff];
256:                        }
257:                    }
258:                    System.arraycopy(L, 0, state, 0, 8);
259:                }
260:                /*
261:                 * apply the Miyaguchi-Preneel compression function:
262:                 */
263:                for (int i = 0; i < 8; i++) {
264:                    hash[i] ^= state[i] ^ block[i];
265:                }
266:            }
267:
268:            /**
269:             * Initialize the hashing state.
270:             */
271:            public void NESSIEinit() {
272:                Arrays.fill(bitLength, (byte) 0);
273:                bufferBits = bufferPos = 0;
274:                buffer[0] = 0; // it's only necessary to cleanup buffer[bufferPos].
275:                Arrays.fill(hash, 0L); // initial value
276:            }
277:
278:            /**
279:             * Delivers input data to the hashing algorithm.
280:             *
281:             * @param    source        plaintext data to hash.
282:             * @param    sourceBits    how many bits of plaintext to process.
283:             *
284:             * This method maintains the invariant: bufferBits < 512
285:             */
286:            public void NESSIEadd(byte[] source, long sourceBits) {
287:                /*
288:                                   sourcePos
289:                                   |
290:                                   +-------+-------+-------
291:                                      ||||||||||||||||||||| source
292:                                   +-------+-------+-------
293:                +-------+-------+-------+-------+-------+-------
294:                ||||||||||||||||||||||                           buffer
295:                +-------+-------+-------+-------+-------+-------
296:                                |
297:                                bufferPos
298:                 */
299:                int sourcePos = 0; // index of leftmost source byte containing data (1 to 8 bits).
300:                int sourceGap = (8 - ((int) sourceBits & 7)) & 7; // space on source[sourcePos].
301:                int bufferRem = bufferBits & 7; // occupied bits on buffer[bufferPos].
302:                int b;
303:                // tally the length of the added data:
304:                long value = sourceBits;
305:                for (int i = 31, carry = 0; i >= 0; i--) {
306:                    carry += (bitLength[i] & 0xff) + ((int) value & 0xff);
307:                    bitLength[i] = (byte) carry;
308:                    carry >>>= 8;
309:                    value >>>= 8;
310:                }
311:                // process data in chunks of 8 bits:
312:                while (sourceBits > 8) { // at least source[sourcePos] and source[sourcePos+1] contain data.
313:                    // take a byte from the source:
314:                    b = ((source[sourcePos] << sourceGap) & 0xff)
315:                            | ((source[sourcePos + 1] & 0xff) >>> (8 - sourceGap));
316:                    if (b < 0 || b >= 256) {
317:                        throw new RuntimeException("LOGIC ERROR");
318:                    }
319:                    // process this byte:
320:                    buffer[bufferPos++] |= b >>> bufferRem;
321:                    bufferBits += 8 - bufferRem; // bufferBits = 8*bufferPos;
322:                    if (bufferBits == 512) {
323:                        // process data block:
324:                        processBuffer();
325:                        // reset buffer:
326:                        bufferBits = bufferPos = 0;
327:                    }
328:                    buffer[bufferPos] = (byte) ((b << (8 - bufferRem)) & 0xff);
329:                    bufferBits += bufferRem;
330:                    // proceed to remaining data:
331:                    sourceBits -= 8;
332:                    sourcePos++;
333:                }
334:                // now 0 <= sourceBits <= 8;
335:                // furthermore, all data (if any is left) is in source[sourcePos].
336:                if (sourceBits > 0) {
337:                    b = (source[sourcePos] << sourceGap) & 0xff; // bits are left-justified on b.
338:                    // process the remaining bits:
339:                    buffer[bufferPos] |= b >>> bufferRem;
340:                } else {
341:                    b = 0;
342:                }
343:                if (bufferRem + sourceBits < 8) {
344:                    // all remaining data fits on buffer[bufferPos], and there still remains some space.
345:                    bufferBits += sourceBits;
346:                } else {
347:                    // buffer[bufferPos] is full:
348:                    bufferPos++;
349:                    bufferBits += 8 - bufferRem; // bufferBits = 8*bufferPos;
350:                    sourceBits -= 8 - bufferRem;
351:                    // now 0 <= sourceBits < 8; furthermore, all data is in source[sourcePos].
352:                    if (bufferBits == 512) {
353:                        // process data block:
354:                        processBuffer();
355:                        // reset buffer:
356:                        bufferBits = bufferPos = 0;
357:                    }
358:                    buffer[bufferPos] = (byte) ((b << (8 - bufferRem)) & 0xff);
359:                    bufferBits += (int) sourceBits;
360:                }
361:            }
362:
363:            /**
364:             * Get the hash value from the hashing state.
365:             *
366:             * This method uses the invariant: bufferBits < 512
367:             */
368:            public void NESSIEfinalize(byte[] digest) {
369:                // append a '1'-bit:
370:                buffer[bufferPos] |= 0x80 >>> (bufferBits & 7);
371:                bufferPos++; // all remaining bits on the current byte are set to zero.
372:                // pad with zero bits to complete 512N + 256 bits:
373:                if (bufferPos > 32) {
374:                    while (bufferPos < 64) {
375:                        buffer[bufferPos++] = 0;
376:                    }
377:                    // process data block:
378:                    processBuffer();
379:                    // reset buffer:
380:                    bufferPos = 0;
381:                }
382:                while (bufferPos < 32) {
383:                    buffer[bufferPos++] = 0;
384:                }
385:                // append bit length of hashed data:
386:                System.arraycopy(bitLength, 0, buffer, 32, 32);
387:                // process data block:
388:                processBuffer();
389:                // return the completed message digest:
390:                for (int i = 0, j = 0; i < 8; i++, j += 8) {
391:                    long h = hash[i];
392:                    digest[j] = (byte) (h >>> 56);
393:                    digest[j + 1] = (byte) (h >>> 48);
394:                    digest[j + 2] = (byte) (h >>> 40);
395:                    digest[j + 3] = (byte) (h >>> 32);
396:                    digest[j + 4] = (byte) (h >>> 24);
397:                    digest[j + 5] = (byte) (h >>> 16);
398:                    digest[j + 6] = (byte) (h >>> 8);
399:                    digest[j + 7] = (byte) (h);
400:                }
401:            }
402:
403:            /**
404:             * Delivers string input data to the hashing algorithm.
405:             *
406:             * @param    source        plaintext data to hash (ASCII text string).
407:             *
408:             * This method maintains the invariant: bufferBits < 512
409:             */
410:            public void NESSIEadd(String source) {
411:                if (source.length() > 0) {
412:                    byte[] data = new byte[source.length()];
413:                    for (int i = 0; i < source.length(); i++) {
414:                        data[i] = (byte) source.charAt(i);
415:                    }
416:                    NESSIEadd(data, 8 * data.length);
417:                }
418:            }
419:
420:            private static String display(byte[] array) {
421:                char[] val = new char[2 * array.length];
422:                String hex = "0123456789ABCDEF";
423:                for (int i = 0; i < array.length; i++) {
424:                    int b = array[i] & 0xff;
425:                    val[2 * i] = hex.charAt(b >>> 4);
426:                    val[2 * i + 1] = hex.charAt(b & 15);
427:                }
428:                return String.valueOf(val);
429:            }
430:
431:            private static final int LONG_ITERATION = 100000000;
432:
433:            /**
434:             * Generate the NESSIE test vector set for Whirlpool.
435:             *
436:             * The test consists of:
437:             * 1. hashing all bit strings containing only zero bits
438:             *    for all lengths from 0 to 1023;
439:             * 2. hashing all 512-bit strings containing a single set bit;
440:             * 3. the iterated hashing of the 512-bit string of zero bits a large number of times.
441:             */
442:            public static void makeNESSIETestVectors() {
443:                Whirlpool w = new Whirlpool();
444:                byte[] digest = new byte[64];
445:                byte[] data = new byte[128];
446:                Arrays.fill(data, (byte) 0);
447:                System.out
448:                        .println("Message digests of strings of 0-bits and length L:");
449:                for (int i = 0; i < 1024; i++) {
450:                    w.NESSIEinit();
451:                    w.NESSIEadd(data, i);
452:                    w.NESSIEfinalize(digest);
453:                    String s = Integer.toString(i);
454:                    s = "     ".substring(s.length()) + s;
455:                    System.out.println("    L =" + s + ": " + display(digest));
456:                }
457:                System.out
458:                        .println("Message digests of all 512-bit strings S containing a single 1-bit:");
459:                data = new byte[512 / 8];
460:                Arrays.fill(data, (byte) 0);
461:                for (int i = 0; i < 512; i++) {
462:                    // set bit i:
463:                    data[i / 8] |= 0x80 >>> (i % 8);
464:                    w.NESSIEinit();
465:                    w.NESSIEadd(data, 512);
466:                    w.NESSIEfinalize(digest);
467:                    System.out.println("    S = " + display(data) + ": "
468:                            + display(digest));
469:                    // reset bit i:
470:                    data[i / 8] = 0;
471:                }
472:                for (int i = 0; i < digest.length; i++) {
473:                    digest[i] = 0;
474:                }
475:                for (int i = 0; i < LONG_ITERATION; i++) {
476:                    w.NESSIEinit();
477:                    w.NESSIEadd(digest, 512);
478:                    w.NESSIEfinalize(digest);
479:                }
480:                System.out.println("Iterated message digest computation ("
481:                        + LONG_ITERATION + " times): " + display(digest));
482:            }
483:
484:            /**
485:             * Generate the ISO/IEC 10118-3 test vector set for Whirlpool.
486:             */
487:            public static void makeISOTestVectors() {
488:                Whirlpool w = new Whirlpool();
489:                byte[] digest = new byte[DIGESTBYTES];
490:                byte[] data = new byte[1000000];
491:
492:                Arrays.fill(data, (byte) 0);
493:
494:                System.out
495:                        .println("1. In this example the data-string is the empty string, i.e. the string of length zero.\n");
496:                w.NESSIEinit();
497:                w.NESSIEfinalize(digest);
498:                System.out
499:                        .println("The hash-code is the following 512-bit string.\n\n"
500:                                + display(digest) + "\n");
501:
502:                System.out
503:                        .println("2. In this example the data-string consists of a single byte, namely the ASCII-coded version of the letter 'a'.\n");
504:                w.NESSIEinit();
505:                w.NESSIEadd("a");
506:                w.NESSIEfinalize(digest);
507:                System.out
508:                        .println("The hash-code is the following 512-bit string.\n\n"
509:                                + display(digest) + "\n");
510:
511:                System.out
512:                        .println("3. In this example the data-string is the three-byte string consisting of the ASCII-coded version of 'abc'.\n");
513:                w.NESSIEinit();
514:                w.NESSIEadd("abc");
515:                w.NESSIEfinalize(digest);
516:                System.out
517:                        .println("The hash-code is the following 512-bit string.\n\n"
518:                                + display(digest) + "\n");
519:
520:                System.out
521:                        .println("4. In this example the data-string is the 14-byte string consisting of the ASCII-coded version of 'message digest'.\n");
522:                w.NESSIEinit();
523:                w.NESSIEadd("message digest");
524:                w.NESSIEfinalize(digest);
525:                System.out
526:                        .println("The hash-code is the following 512-bit string.\n\n"
527:                                + display(digest) + "\n");
528:
529:                System.out
530:                        .println("5. In this example the data-string is the 26-byte string consisting of the ASCII-coded version of 'abcdefghijklmnopqrstuvwxyz'.\n");
531:                w.NESSIEinit();
532:                w.NESSIEadd("abcdefghijklmnopqrstuvwxyz");
533:                w.NESSIEfinalize(digest);
534:                System.out
535:                        .println("The hash-code is the following 512-bit string.\n\n"
536:                                + display(digest) + "\n");
537:
538:                System.out
539:                        .println("6. In this example the data-string is the 62-byte string consisting of the ASCII-coded version of 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'.\n");
540:                w.NESSIEinit();
541:                w
542:                        .NESSIEadd("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
543:                w.NESSIEfinalize(digest);
544:                System.out
545:                        .println("The hash-code is the following 512-bit string.\n\n"
546:                                + display(digest) + "\n");
547:
548:                System.out
549:                        .println("7. In this example the data-string is the 80-byte string consisting of the ASCII-coded version of eight repetitions of '1234567890'.\n");
550:                w.NESSIEinit();
551:                w
552:                        .NESSIEadd("12345678901234567890123456789012345678901234567890123456789012345678901234567890");
553:                w.NESSIEfinalize(digest);
554:                System.out
555:                        .println("The hash-code is the following 512-bit string.\n\n"
556:                                + display(digest) + "\n");
557:
558:                System.out
559:                        .println("8. In this example the data-string is the 32-byte string consisting of the ASCII-coded version of 'abcdbcdecdefdefgefghfghighijhijk'.\n");
560:                w.NESSIEinit();
561:                w.NESSIEadd("abcdbcdecdefdefgefghfghighijhijk");
562:                w.NESSIEfinalize(digest);
563:                System.out
564:                        .println("The hash-code is the following 512-bit string.\n\n"
565:                                + display(digest) + "\n");
566:
567:                Arrays.fill(data, (byte) 'a');
568:                System.out
569:                        .println("9. In this example the data-string is the 1000000-byte string consisting of the ASCII-coded version of 'a' repeated 10^6 times.\n");
570:                w.NESSIEinit();
571:                w.NESSIEadd(data, 8 * 1000000);
572:                w.NESSIEfinalize(digest);
573:                System.out
574:                        .println("The hash-code is the following 512-bit string.\n\n"
575:                                + display(digest) + "\n");
576:            }
577:
578:            public static void main(String[] args) {
579:                //makeNESSIETestVectors();
580:                makeISOTestVectors();
581:            }
582:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.